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Abstract. For a positive integer n, let σ(n) denote the sum of all positive divisors of n. Then
n is said to be a k-facile perfect number if σ(n) = 2n+ d1d2 · · · dk, where 1 < d1, d2, . . . , dk < n
are distinct divisors of n. This paper characterizes k-facile perfect numbers and establishes their
relationships with other special numbers.
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1. Introduction

Let n =
∏m

i=1 p
αi
i be the canonical representation of a positive integer n, where p1, p2, . . . , pm are

distinct prime numbers with p1 < p2 < · · · < pm and α1, α2, . . . , αm are non-negative integers.
The sigma function σ(n) gives the sum of all the positive divisors of n, i.e

σ(n) =
∑
d|n

d =
m∏
i=1

pαi+1
i − 1

pi − 1
.

A number is said to be perfect, abundant, or deficient number if σ(n) = 2n, σ(n) > 2n
or σ(n) < 2n respectively. The numbers 6, 28, 496, 8128, 33550336, . . . (see the OESIS se-
quence A000396 [1]), 12, 18, 20, 24, 30, 36, 40, 42, . . . (see the OESIS sequence A005101 [1]), and
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, . . . (see the sequence A005100 [1]) are respectively the first few perfect,
abundant, and deficient numbers. Mathematicians have been interested in exploring perfect
numbers since antiquity. It is well known from the work of Euclid and Euler that an integer n is
perfect if and only if n = 2p−1(2p − 1), where p and 2p − 1 are both primes. The prime numbers
of the form 2p − 1 are known as Mersenne primes. Proving the existence of an odd perfect
number is still an open question that many researchers are working on. In search of odd perfect
numbers, mathematicians have been trying to generalize the concept of existing numbers. They
have also defined various numbers, which are related to perfect numbers in a very close manner
(for instance, the last author’s joint work with Laugier and Sarmah [2], with Dutta [3] and with
Mahanta and Yaqubi [4]). Near-perfect numbers are one such generalization that has garnered a
lot of attention. In 2012, Pollack and Shevelev [5] introduced k-near-perfect numbers. A number
n is called a k-near-perfect number if n is the sum of all of its proper divisors with at most k
exceptions (called redundant divisors) for k ≥ 1. When k = 1, we get near-perfect number with
exactly one redundant divisor. A number n is said to be a near-perfect if

σ(n) = 2n+ d,

where the redundant divisor d, is a proper divisor of n. They [5] presented an upper bound
on the count of near-perfect numbers and further proved that there are infinitely many k-near-
perfect numbers with exactly k redundant divisors for all large k. Several generalizations of
perfect numbers (including near-perfect numbers) are ‘additive’ in nature, that is, they focus on
generalizing the basic equation σ(n) = 2n to equations of the type

σ(n) = ℓn+
k∑

i=1

aidi,

1
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where ℓ, k are natural numbers, ai’s are positive integers and di are divisors of n. Here, we will
focus on a new kind of generalization called facile perfect numbers.

Definition 1. For k > 1, a natural number n is said to be k-facile perfect number if

(1) σ(n) = 2n+
k∏

i=1

di,

where di > 1 for (1 ≤ i ≤ k) are distinct proper divisors of n, known as facile divisors of n.

For example, we consider n = 40. The set of divisors of 40 is {1, 2, 4, 5, 8, 10, 20, 40} and we
can see that

σ(n) = σ(40) = 90 = 2× 40 + 2× 5.

Therefore, 40 is a 2−facile perfect number with facile divisors 2 and 5.

Remark 1. Clearly, 1-facile perfect numbers are near-perfect.

Proposition 1. A k-facile perfect number is abundant.

We have the following elementary inequality, which we use in the sequel

(2) 2 <
σ(n)

n
<

m∏
i=1

pi
pi − 1

.

This paper is structured as follows: Section 2 contains the characterization of k-facile perfect
numbers depending on the number of distinct prime factors; Section 3 contains the connections
between k-facile perfect numbers and other classes of special numbers; and finally, section 4
contains certain natural questions which arise from our work.

2. Characterization of k-facile perfect numbers

Theorem 1. There are no k-facile perfect numbers with one prime factor.

Proof. Let n = pα be a k-facile perfect number with facile divisors di = pαi (1 ≤ i ≤ k), for a

prime number p and positive integers α, αi with 0 < αi < α. Then σ(pα) = 2 × pα +
∏k

i=1 p
αi ,

which gives

(3) pα(2− p) = 1 + (p− 1)
k∏

i=1

pαi .

If p = 2, we have
∏k

i=1 p
αi = −1, this is a contradiction. When p > 2, the right side of (3) is

positive, but the left side of (3) is less than zero, which is a contradiction. This completes the
proof. □

Remark 2. If we take k = 1 in the above theorem 1, then the proof works without change. This
also shows that there are no near-perfect numbers with one prime factor. This is already known
by the work of Ren and Chen [6].

Theorem 2. There exists no k-facile perfect number with only two linear prime factors.

Proof. For any two prime numbers p1, p2(p1 < p2), let us assume that n = p1p2 is a k-facile
perfect number with facile divisors di’s (1 ≤ i ≤ k). Then σ(n) = (p1 + 1)(p2 + 1) and thus it
follows from (1) that

k∏
i=1

di = p1 + p2 − p1p2 + 1.

For all p1 ≥ 2, p1+p2−p1p2+1 ≤ 0. This implies that
∏k

i=1 di ≤ 0, which is a contradiction. □
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Remark 3. We notice again that the proof works even if k = 1, so this proves the non-existence
of such near-perfect numbers, which is already known.

Theorem 3. There are no odd k-facile perfect numbers of the form n = pα1
1 pα2

2 for any prime
numbers p1, p2 and natural numbers α1, α2 ≥ 2.

Proof. Let us assume that n = pα1
1 pα2

2 is an odd k-facile perfect number, where p1, p2 are two
prime numbers and α1, α2 are natural numbers. It follows from Theorem 2 that α1, α2 both are
not equal to 1. Now we get

(4) σ(n) =
pα1+1
1 − 1

p1 − 1
· p

α2+1
2 − 1

p2 − 1
<

pα1+1
1

p1 − 1
· pα2+1

2

p2 − 1
= n · p1p2

(p1 − 1)(p2 − 1)
.

We will use the inequality
p

p− 1
<

q

q − 1
, whenever p > q, without commentary from hereon.

Since n is odd, p1 ≥ 3. Then from equation (4), we obtain

σ(n) < n · 3× 5

2× 4
< 2n.

This contradicts Proposition 1 and hence proves the theorem. □

Remark 4. We see that the proof works if we set k = 1 as well. This proves the non-existence
of such near-perfect numbers, as is already known from the work of Tang et.al. [7].

Theorem 4. Let n = pα1
1 pα2

2 be the prime factorization of a 2-facile perfect number n, where
p1, p2 are distinct prime numbers and α1, α2 are natural numbers . Then

(a) If α1 = 2 and α2 = 1, then there exists no 2-facile perfect number.
(b) If α1 = 3 and α2 = 1, then 3 ≤ p2 ≤ 7.
(c) If α1 = 4 and α2 = 1, then 368 is the only 2-facile perfect number.
(d) If α1 = 5 and α2 = 1, then 224, 992 and 1504 are the only three 2-facile perfect numbers.
(e) If α1 = 3 and α2 = 2, then there exists no 2-facile perfect number.

Proof. Let us consider a 2-facile perfect number n = pα1
1 pα2

2 , where α1, α2 are natural numbers
and p1, p2 are distinct prime numbers with p1 < p2 . Theorem 3 implies that n is even therefore
p1 = 2.

(a) For α1 = 2 and α2 = 1, we have n = 22p2 and σ(n) = 7(p2 + 1). By using equation (2),
we get

2 <
σ(n)

n
=

7(p2 + 1)

22p2
⇒ 8p2 < 7p2 + 7 ⇒ p2 < 7.

Therefore, p2 = 3 or 5. When p2 = 3, n = 22 × 3 = 12, σ(n) = 28 = 2× 12 + 4 and when
p2 = 5, n = 22 × 5 = 20, σ(n) = 42 = 2× 20 + 2. It is clear that both 12 and 20 are not
2-facile perfect numbers. Thus, we conclude that there exist no 2-facile perfect numbers
when α1 = 2 and α2 = 1.

(b) For α1 = 3 and α2 = 1, we have n = 23p2 and σ(n) = 15(p2 + 1). By using equation (2),
we get

2 <
15(p2 + 1)

23p2
⇒ 16p2 < 15p2 + 15 ⇒ p2 < 15.

Therefore, 3 ≤ p2 ≤ 13. But for p2 = 11, n = 23 × 11 = 88, σ(n) = 180 = 2× 88 + 4 and
for p2 = 13, n = 22 × 13 = 104, σ(n) = 210 = 2× 104 + 2. It is clear that both 11 and 13
are not 2-facile perfect numbers. Thus, we conclude that when α1 = 3 and α2 = 1, we
have 3 ≤ p2 ≤ 7.

(c) For α1 = 4 and α2 = 1, we have 368 = 24 × p2 ⇒ p2 = 23 and clearly 368 is a 2-
facile perfect number with facile divisors 2 and 4. From equation (2), we have p2 < 31.
Therefore, when 3 ≤ p2 ≤ 29, numerical computations can easily verify that all numbers
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of the form n = 24p2 are not 2−facile perfect numbers except for p2 = 23. This proves
that 368 is the only 2-facile perfect number when α1 = 4 and α2 = 1.

(d) For α1 = 5 and α2 = 1, we have n = 25p2 and σ(n) = 63(p2 + 1). By using equation
(2), we get p2 < 63. Therefore, 3 ≤ p2 ≤ 61. When p2 = 7, we have n = 25 × 7 = 224
and σ(n) = 504 = 2 × 224 + 56. When p2 = 31, we have n = 25 × 31 = 992 and
σ(n) = 2016 = 2 × 992 + 32. When p2 = 47, we have n = 25 × 47 = 1504 and
σ(n) = 3024 = 2×1504+16. Numerical computations can easily verify that all numbers
of the form n = 25p2 are not 2−facile perfect numbers except for p2 = 7, 31 and 47. This
proves that 224, 992, 1504 are the only 2-facile perfect number when α1 = 5 and α2 = 1.

(e) For α1 = 3 and α2 = 2, we have n = 23p22 and σ(n) = 15 × p32 − 1

p2 − 1
. By using equation

(2) we get

2 <
15(p32 − 1)

23p22(p2 − 1)
⇒ p22 − 15p2 − 15 < 0 ⇒ p2 < 16.

Therefore, 3 ≤ p2 ≤ 13. It can be easily checked by numerical computation that all the
numbers of the form n = 23p22 are not 2-facile perfect numbers for 3 ≤ p ≤ 13. Thus, we
conclude that there exist no 2-facile perfect numbers when α1 = 3, α2 = 2.

□

Theorem 5. For any three odd primes p1, p2 and p3, there are no odd k-facile perfect number
of the form n = pα1

1 pα2
2 pα3

3 if αi’s are odd natural numbers.

Proof. Let n = pα1
1 pα2

2 pα3
3 be an odd k-facile perfect number, where p1, p2 and p3 are any three

distinct odd primes with p1 < p2 < p3. Then all the facile divisors being odd, we observe that the
right side of equation (1) is odd. If all the natural numbers αi’s are odd, then

∑αi

j=1 p
j
i , i = 1, 2, 3

is odd and consequently, σ(n) =
∏3

i=1

pαi+1
i − 1

pi − 1
=

∏3
i=1(1 + pi + p2i + · · · + pαi

i ) is even. This

shows that the left side of equation (1) is even, which is a contradiction. □

Theorem 6. For any prime p ≥ 5, there exists a 2-facile perfect number n of the form n = 2×3p
if and only if the product of the facile divisors is 22 × 3.

Proof. For any prime p ≥ 5, let n be a 2-facile perfect number of the form n = 2× 3p. If d1, d2
are the facile divisors of n, then 1 < d1, d2 < n and

d1d2 = σ(2× 3p)− 2× 2× 3p = 22 × 3.

Now, conversely let n = 2 × 3p be a positive integer with divisors d1 and d2 such that 1 <
d1, d2 < n and d1d2 = 22 × 3. Then σ(n) = 12(p + 1) = 12p + 12 = 2(2 × 3p) + 22 × 3. This
proves that n is a 2-facile perfect number. □

It is possible to calculate the bounds for the primes of k-facile perfect numbers. The following
result gives the bound for few facile perfect numbers.

Theorem 7. For distinct primes pi’s and non-negative integers αi’s, let n = pα1
1 pα2

2 pα3
3 · · · pαℓ

ℓ

be a k-facile perfect number with the facile divisor di’s. Then

(a) If ℓ = 3 and p1 = 3, then p2 = 5 and 7 ≤ p3 ≤ 13.
(b) If ℓ = 4 and p1 = 3, then p2 = 5 or 7.

(b.1) If p2 = 5, then p3 ≤ 31.
(b.2) If p2 = 7, then p3 = 11 or 13.

(c) If ℓ = 5 and p1 = 3, then p2 ≤ 11.
(c.1) If p2 = 5, then p3 ≤ 41.
(c.2) If p2 = 7, then p3 ≤ 19.
(c.3) If p2 = 11, then p3 = 13.
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(d) If ℓ = 6 and p1 = 3, then p2 ≤ 11.
(d.1) If p2 = 5, then p3 ≤ 53.
(d.2) If p2 = 7, then p3 ≤ 23.
(d.3) If p2 = 11, then p3 ≤ 17.

(e) If ℓ = 7 and p1 = 3, then p2 ≤ 13.
(e.1) If p2 = 5, then p3 ≤ 67.
(e.2) If p2 = 7 or p2 = 11, then p3 ≤ 19.
(e.3) If p2 = 13, then p3 = 17.

Proof. Since the proofs of the different cases are similar, we only prove (a) here. We have

σ(n) =
ℓ∏

i=1

pαi+1
i − 1

pi − 1
<

ℓ∏
i=1

pαi+1
i

pi − 1
= n

ℓ∏
i=1

pi
pi − 1

.

When ℓ = 3, for p1 = 3, we consider p2 ≥ 7. Then

σ(n) < n× 3

2
× 7

6
× p3

p3 − 1
= n× 7

4
× p3

p3 − 1
.

But for all p3 ≥ 11, we have σ(n) < 2n, which contradicts Proposition 1. So, for p1 = 3, we have
p2 = 5. Next, we assume that for p3 ≥ 17. Then

σ(n) < n× 3

2
× 5

4
× 17

16
⇒ σ(n) < 2n.

This is impossible. Thus, 7 ≤ p3 ≤ 13. And similarly, we can prove the other bounds. □

3. Relationship between facile perfect numbers and other special
numbers

In this section, we relate facile perfect numbers with other unique numbers. Even perfect num-
bers are strongly related to the Mersenne primes; therefore, in the first part of this section,
we study the relationship between facile perfect numbers and Mersenne primes. We denote
Mersenne primes by Mp = 2p − 1, where p is a prime.

Theorem 8. For any prime p > 2, n = 2pMp is a k-facile perfect number, where 2p is the
product of the facile divisors, and Mp is a Mersenne prime.

Proof. The proof follows immediately from equation (1); therefore, we omit the details here. □

The following theorem establishes a relation between k-facile numbers and perfect numbers.

Theorem 9. For any prime p and natural number ℓ, an integer n = 2ℓP is a k-facile perfect
number with 2p(2ℓ − 1) as the product of the facile divisors, where P = 2p−1(2p − 1) is an even
perfect number.

Proof. We consider n = 2ℓP = 2l+p−1(2p−1), where ℓ is a natural number. Then 2n = 2l+p(2p−1)
and σ(n) = (2l+p − 1)2p. Therefore,

σ(n) = 2l+p2p − 2p = 2l+p(2p − 1) + 2l+p − 2p = 2l+p(2p − 1) + 2p(2l − 1) = 2n+ 2p(2l − 1).

It follows from equation (1) that n is a k-facile perfect number and 2p(2l − 1) is the product of
its facile divisors. □

The construction given by Pollack and Shevelev [5] of the three types of even near-perfect
numbers are as follows:
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• Type 1: For the positive integers ℓ, s, with s ≥ ℓ + 1, n = 2ℓ−1(2ℓ − 2s − 1) is a near-
perfect number with 2s as the redundant divisor, where (2ℓ − 2s − 1) a prime. The first
few near-perfect numbers of this type of construction are 12, 20, 56, 88, . . . [1].

• Type 2: For the Mersenne prime 2p − 1, n = 22p−1(2p − 1) is a near-perfect number with
2p(2p − 1) as the redundant divisor. The three near-perfect numbers of this type are
24, 224 and 15872 [6].

• Type 3: For the Mersenne prime 2p − 1, n = 2p−1(2p − 1)2 is a near-perfect number with
2p − 1 as the redundant divisor. The three near-perfect numbers of this type are 18, 196
and 15376 [6].

In addition to these three types of construction of near-perfect numbers, the number 40 is also
near-perfect. In 2013, Ren and Chen [6] improved this result and determined all near-perfect
numbers with two distinct prime factors. Li and Liao [8] provided two equivalent conditions of
all even near-perfect numbers of the forms 2αp1p2 and 2αp21p2 in the year 2015. Tang et al. [7]
determined all deficient perfect numbers with at most two distinct prime factors and proved that
there are no odd near-perfect numbers with three distinct prime divisors. A number n is called
a deficient-perfect number if

σ(n) = 2n− d,

where the deficiency divisor d, is a proper divisor of n. We can see that the facile perfect
numbers and near-perfect numbers are closely related. Even near-perfect numbers of type 1 are
2-facile perfect numbers except those near-perfect numbers having redundant divisors 2 and 4.
For example, 12, whose redundant divisor is 4, is not a 2-facile perfect number. Similarly, 20
having redundant divisor 2 is not a 2-facile perfect number. The number 40 is a 2-facile perfect
number with facile divisors 2 and 5. The following results establish some relationships between
near-perfect numbers and facile perfect numbers.

Theorem 10. A near-perfect number n of type 1 is a 2-facile perfect number if the redundant
divisor d of n is greater than or equal to 23.

Proof. Let n = 2m−1(2m−2ℓ−1) be a near-perfect number of type 1, where ℓ ≥ 3,m ≥ l+1. Let
d1, d2 be any two proper divisors of n such that d1 = 2t1 , d2 = 2t2(t1 ̸= t2). Clearly, t1 + t2 ≥ 3,
since t1 + t2 < 3 is not possible. Then 2n = 2m(2m − 2l − 1). And,

σ(n) = (2m − 1)(2m − 2ℓ) = 2m(2m − 2ℓ − 1) + 2ℓ.

This shows that

σ(n) = 2n+ 2ℓ.(5)

Since t1 < ℓ , 2t1|2ℓ and m ≥ ℓ + 1, it implies 2ℓ|2m−1. Thus, when 2t1|2m−1, it implies 2t1|n.
Similarly, we can show that 2t2|n. Therefore, it follows from equation (5) that σ(n) = 2n+d1d2.
This proves that n is a 2-facile perfect number. □

Theorem 11. All near-perfect numbers of type 2 are k-facile perfect numbers.

Proof. A near-perfect number n = 22p−1(2p − 1) of type 2 can be written as n = 2p2p−1(2p − 1).
Therefore, by Theorem 9, n is a k-facile perfect number. □

Remark 5. Redundant divisor of a near-perfect number n = 2p−1(2p − 1)2 of type 3 is 2p − 1
(see [5]). Since 2p−1 is a prime number it is irreducible. For this reason, a near-perfect number
of type 3 is not a k-facile perfect number.

Another well-studied generalization of perfect numbers is the k-perfect numbers. A natural
number n is called k-perfect number, where k ∈ N if

(6) σ(n) = kn+ n = (k + 1)n.
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We can see that 1-perfect numbers are perfect numbers. The numbers 120, 972, 523776 and
459818240 are 2−perfect, while the numbers 30240, 32760, 142990848 and 66433720320 are
3-perfect numbers. The following results describe the relation between k-perfect and k-facile
perfect numbers.

Theorem 12. A 2-facile perfect number is a 2-perfect number if and only if the product of the
facile divisors is the number itself.

Proof. Let us consider a 2-facile perfect number n, whose facile divisors are d1 and d2. If n is a
2-perfect number, then from equation (6), we have

(7) σ(n) = (2 + 1)n = 2n+ n.

Then from equations (1) and (7), it follows that d1d2 = n. Conversely, let the facile divisors
d1d2 = n. It follows from (1) that

σ(n) = 2n+ n = (2 + 1)n.

This shows that n is a 2-perfect number. □

We now extend Theorem 12 to the following result.

Theorem 13. A k-facile perfect number is a k-perfect number if and only if the product of the
facile divisors is (k − 1) times of the number itself.

Proof. The proof is similar to the proof of Theorem 12, hence we omit the explanation. □

Finally, we establish the connections between facile perfect numbers and Fermat primes.
Numbers of the form Fn = 22

n
+ 1, where n is a non-negative integer, are known as Fermat

numbers and prime numbers of this form are called Fermat primes. For n = 0, 1, 2, 3, 4, respective
Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537. Fermat conjectured that all
the numbers Fn are prime, which was later disproved by Leonhard Euler in the year 1732 who
showed that 641 is a factor of F5 = 4294967297. So far, there are only five Fermat primes
discovered. The following result establishes a relationship between 2-facile perfect numbers and
Fermat primes.

Theorem 14. For any Fermat prime Fp, if ℓ ≤ p, then a number n of the form n = 2ℓFp is not
a 2-facile perfect number, where ℓ ∈ N.

Proof. Let us consider n = 2ℓFp = 2ℓ(22
p
+ 1), 0 ≤ p ≤ 4 and let n be a 2-facile perfect number

with facile divisors d1and d2. Then, it follows that

d1d2 = σ(n)− 2n = (2ℓ+1 − 1)(22
p

+ 2)− 2ℓ+1(22
p

+ 1) = 2ℓ+1 − 22
p − 2.

When ℓ = p, we have, for all p ≥ 0, p+ 1 ≤ 2p ; Therefore

d1d2 = 2p+1 − 22
p − 2 < 0.(8)

This is a contradiction. Again when ℓ < p, we have, for all, p ≥ 0, ℓ+1 < p+1 ≤ 2p. Therefore,

d1d2 = 2ℓ+1 − 22
p − 2 < 0.(9)

This is a contradiction. Thus, the number n = 2ℓFp is not a 2-facile perfect number. □

Remark 6. For ℓ > p, the number n = 2ℓFp can occasionally be a 2-facile perfect number like
23F0 = 24 and 23F1 = 40. However, it remains an open problem to find the bounds on ℓ to make
n a 2-facile perfect number.

4. Concluding Remarks

Several natural questions arise from our research. Here is a list of a few of them.
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(1) In this paper, we have focused on characterizing arithmetic properties of k-facile perfect
numbers. It would be interesting to analyze analytical aspects of such numbers as well,
such as was done by Pollack and Shevelev [5] for near-perfect numbers.

(2) An easy generalization of the concept of deficient perfect numbers would be to study the
following equation

σ(n) = 2n−
k∏

i=1

di,

where di’s are proper divisors of n and k ≥ 1. We expect similar results for this type of
generalization also to be true.

(3) We can further generalize equation (1) to

σ(n) = ℓn+
k∏

i=1

di,

and look at analogous properties of n for this generalization as well.
(4) It would appear that some of the techniques used by other authors (cf. [3], [7], etc.)

would be possible to apply in our case as well.
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