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Graphical Condensation Aztec Rectangles

Kuo’s Graphical Condensation

For a graph G , M(G ) denotes the number of perfect matchings of
G .

Theorem (Eric Kuo)

Let G be a planar graph with four vertices w , x , y , z that appear
in that cyclic order on a face of G . Then

M(G )M(G − {w , x , y , z}) + M(G − {w , y})M(G − {x , z})

= M(G−{w , x})M(G−{y , z})+M(G−{w , z})M(G−{x , y}).
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Graphical Condensation Aztec Rectangles

Kuo’s Graphical Condensation

If G = (V1,V2,E ) is bipartite, and

I w , y ∈ V1, x , z ∈ V2, |V1| = |V2|; second term vanishes
I w , x ∈ V1, y , z ∈ V2, |V1| = |V2|; third term vanishes
I w , x , y , z ∈ V1, |V1| = |V2|+ 2; first term vanishes
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Graphical Condensation Aztec Rectangles

Sketch Proof

I Superimpose a perfect matching of G (blue) and a perfect
matching of G − {w , x , y , z}) (red) on the same copy of G

I There is a blue-red alternating path from w to one of x , y , z
I Two such paths cannot cross, so w does not connect to y

I Switch the edges in the path of w and get a pair of matchings
of G − {w , x}) and G − {y , z}) or of G − {w , z} and
G − {x , y})

4/39
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Graphical Condensation Aztec Rectangles

Pfaffians

Let A = (ai ,j) be a 2n× 2n antisymmetric matrix and Γn be the set
of all perfect matchings of K2n.

Then

Pf(A) =
∑

π={(i1,j1),...,(in,jn)}∈Γn

sgnπ
n∏

k=1

aik ,jk

where sgnπ = sgn i1j1i2j2 . . . injn.

I There are many ways to write π, so to see that Pf(A) is
well-defined we can assume that ik < jk and i1 < i2 < . . . < in.

I Pfaffians have many interesting properties, such as

Pf(A)2 = det(A).
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Graphical Condensation Aztec Rectangles

An Example

Let n = 2, then

Pf(A) =
∑

π={(i1,j1),(i2,j2)}∈Γ2

sgnπ
2∏

k=1

aik ,jk

Pf(A) = a1,2a3,4 − a1,3a2,4 + a1,4a2,3.
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Graphical Condensation Aztec Rectangles

Ciucu’s Extension of Kuo’s Condensation

Theorem (Mihai Ciucu)

Let G be a planar graph with the vertices a1, a2, . . . , a2k ap-
pearing in that cyclic order on a face of G .

Consider the skew-
symmetric matrix A = (aij)1≤i ,j≤2k with entries given by

aij := M(G \ {ai , aj}), if i < j . (1.1)

Then we have that

M(G \ {a1, a2, . . . , a2k}) =
Pf(A)

[M(G )]k−1 . (1.2)

7/39



Graphical Condensation Aztec Rectangles

Ciucu’s Extension of Kuo’s Condensation

Theorem (Mihai Ciucu)

Let G be a planar graph with the vertices a1, a2, . . . , a2k ap-
pearing in that cyclic order on a face of G . Consider the skew-
symmetric matrix A = (aij)1≤i ,j≤2k with entries given by

aij := M(G \ {ai , aj}), if i < j . (1.1)

Then we have that

M(G \ {a1, a2, . . . , a2k}) =
Pf(A)

[M(G )]k−1 . (1.2)

7/39



Graphical Condensation Aztec Rectangles

Ciucu’s Extension of Kuo’s Condensation

Theorem (Mihai Ciucu)

Let G be a planar graph with the vertices a1, a2, . . . , a2k ap-
pearing in that cyclic order on a face of G . Consider the skew-
symmetric matrix A = (aij)1≤i ,j≤2k with entries given by

aij := M(G \ {ai , aj}), if i < j . (1.1)

Then we have that

M(G \ {a1, a2, . . . , a2k}) =
Pf(A)

[M(G )]k−1 . (1.2)

7/39



Graphical Condensation Aztec Rectangles

Some notations

Let G and H be graphs, where G is an induced subgraph of H. We
now define a symmetric difference on the edge and vertex sets of
graphs.

Let W ⊂ V (H), then

V (G + W ) = V (G )∆W

E (G + W ) = E (G )∆E (W )

8/39
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Graphical Condensation Aztec Rectangles

Our generalization of Ciucu’s result

Theorem (S.)

Let H be a planar graph and let G be an induced subgraph of H
with the vertices a1, a2, . . . , a2k appearing in that cyclic order on a
face of G .

Consider the skew-symmetric matrix A = (aij)1≤i ,j≤2k
with entries given by

aij := M(G + {ai , aj}), if i < j . (1.3)

Then we have that

M(G + {a1, a2, . . . , a2k}) =
Pf(A)

[M(G )]k−1 . (1.4)
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Graphical Condensation Aztec Rectangles

Our generalization of Ciucu’s result

Our result is a common generalization of both Ciucu’s and Kuo’s
result. For Ciucu, we just take the vertices ai ∈ V (G ).

Our result also gives as corollary, the following result of Kuo, which
does not follow from Ciucu’s result.

Corollary (Eric Kuo)

Let G = (V1,V2,E ) be a bipartite planar graph with |V1| =
|V2| + 1; and let w , x , y and z be vertices of G that appear in
cyclic order on a face of G . If w , x , y ∈ V1 and z ∈ V2 then

M(G − {w})M(G − {x , y , z}) + M(G − {y})M(G − {w , x , z})

= M(G−{x})M(G−{w , y , z})+M(G−{z})M(G−{w , x , y}).

10/39
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Graphical Condensation Aztec Rectangles

Idea of the proof

The main ingredients are induction and the following Proposition.

Proposition

Let H be a planar graph and G be an induced subgraph of H with
the vertices a1, . . . , a2k appearing in that cyclic order among the
vertices of some face of G . Then

M(G )M(G + {a1, . . . , a2k})

+
k∑

l=2

M(G + {a1, a2l−1})M(G + {a1, a2l−1})

=
k∑

l=1

M(G + {a1, a2l})M(G + {a1, a2l}),

where {ai , aj} stands for the complement of {ai , aj} in the set
{a1, . . . , a2k}.
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Graphical Condensation Aztec Rectangles

Aztec Diamonds

I In 1991, Elkies, Kuperberg, Larsen and Propp introduced a
new class of object which they called Aztec Diamonds.

I The Aztec Diamond of order n (denoted by AD(n)) is the
union of all unit squares inside the contour |x |+ |y | = n + 1

12/39
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Graphical Condensation Aztec Rectangles

Aztec Diamonds

Figure: AD(3), Aztec Diamond of order 3
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Graphical Condensation Aztec Rectangles

Aztec Diamond Theorem

I A domino is the union of any two unit squares sharing an edge,
and a domino tiling of a region is a covering of the region by
dominoes so that there are no gaps or overlaps.

I They considered the problem of counting the number of
domino tiling the Aztec Diamond with dominoes and presented
four different proofs of the following result.

Theorem (Elkies–Kuperberg–Larsen–Propp)

The number of domino tilings of an Aztec Diamond of order n is
2n(n+1)/2.

14/39
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Graphical Condensation Aztec Rectangles

Aztec Rectangles

I We denote by ARa,b the Aztec rectangle which has a unit
squares on the southwestern side and b unit squares on the
northwestern side.

I We assume b ≥ a unless otherwise mentioned. For a < b,
ARa,b does not have any tiling by dominoes.

I The non-tileability of the region ARa,b becomes evident if we
look at the checkerboard representation of ARa,b

15/39
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Graphical Condensation Aztec Rectangles

Aztec Rectangle

Figure: Checkerboard representation of an Aztec Rectangle with
a = 4, b = 10
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Graphical Condensation Aztec Rectangles

Aztec Rectangle Theorem

If we remove b − a unit squares from the southeastern side then we
have a simple product formula found by Helfgott and Gessel.

Theorem (Helfgott–Gessel)

Let a < b be positive integers and 1 ≤ s1 < s2 < · · · < sa ≤
b. Then the number of domino tilings of ARa,b where all unit
squares from the south-eastern side are removed except for those
in positions s1, s2, . . . , sa is

2a(a+1)/2
∏

1≤i<j≤a

sj − si
j − i

.

Our goal here is to extend this result.

17/39
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in positions s1, s2, . . . , sa is

2a(a+1)/2
∏

1≤i<j≤a

sj − si
j − i

.

Our goal here is to extend this result.
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Graphical Condensation Aztec Rectangles

Our Ideas

I We consider regions with defects (one unit square removed) on
the boundaries of an Aztec Rectangle.

I Helfgott–Gessel’s result is for defects on one of the longer
sides.

I We would like to use Ciucu’s result to give a Pfaffian for the
regions we are interested in.

I But the problem is, if k > 0 in Ciucu’s result, then our graph
G has no matchings.

I So, we modify our region suitably and try to use condensation
results.
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Graphical Condensation Aztec Rectangles

k = 0: Aztec Diamond

It is well known, that domino tilings of Aztec Diamonds/Rectangles
correspond to counting the number of perfect matchings of its dual
planar graph.

So, from now on we use the terms matchings and
tilings equivalently.

Here G is now the rectangular grid and ai ’s are the defects on the
boundary.We need to compute M(G − {ai , aj)}).

I If ai , aj are on the same side, then the defects are of same type
and we get no matchings.

I If ai , aj are on opposite sides, then the defects are of same
type and we get no matchings.

I If ai , aj are on adjacent sides, then the defects are of different
type and we get matchings.
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Graphical Condensation Aztec Rectangles

Aztec Diamond with defects on adjacent sides

Proposition

The number of domino tilings of AD(a) with one defect on the
southeastern side at the i-th position counted from the south
corner and one defect on the northeastern side on the j-th position
counted from the north corner is given by

min{i ,j}∑
l=1

2(a−l)(a−l+1)/2+
∑l−2

k=0(a−k)

(
a− l

i − l

)(
a− l

j − l

)
.
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Graphical Condensation Aztec Rectangles

Proof

We use Kuo condensation, with the vertices marked as follows.

y

z

w

x

Figure: Aztec Diamond with some marked squares; here a = 6
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Graphical Condensation Aztec Rectangles

Proof contd.

We use induction with respect to a. The base case of induction is
a = 2. We would also need to check for i = 1, j = 1, i = a and
j = a separately.

If a = 2, then the only possibilities are i = 1 or i = a and j = 1 or
j = a, so we do not have to consider this case, once we consider
the other mentioned cases.

We note that when either i or j is 1 or a, some dominoes are forced
in any tiling and hence we are reduced to an Aztec rectangle of size
(a− 1)× a. It is easy to see that our formula is correct for this.
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Graphical Condensation Aztec Rectangles

Proof contd.

In the rest of the proof we assume a ≥ 3 and 1 < i , j < a.

Let us
now denote the region we are interested in this proposition as
ADa(i , j).Using the dual graph of this region and applying Kuo
Condensation with the vertices as labelled in the previous figure we
obtain the following identity.

M(ADa(i , j))M(AD(a− 1)) = M(AD(a))M(ADa−1(i − 1, j − 1))

+M(ARa−1,a(j))M(ARa−1,a(i)).
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Graphical Condensation Aztec Rectangles

y

z

x

w

y

w

z

x

y

x

Figure: Forced dominoes, where the vertices we remove are marked
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Graphical Condensation Aztec Rectangles

Proof contd.

Simplifying the previous equation, we get the following

M(ADa(i , j)) = 2a M(ADa−1(i−1, j−1))+2a(a−1)/2
(
a− 1
i − 1

)(
a− 1
j − 1

)
(2.1)

The above follows from using the theorems of Elkies et. al. and
Heffgott–Gessel.

Now, using our inductive hypothesis on this equation and making a
change of label l + 1 7→ w completes the proof.
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Graphical Condensation Aztec Rectangles

k > 0: Aztec Rectangles

I In order to create a region that can be tiled by dominoes we
have to remove k more white squares than black squares along
the boundary of ARa,b.

I There are 2b white squares and 2a black squares on the
boundary of ARa,b. We choose n + k of the white squares
that share an edge with the boundary and denote them by
β1, β2, . . . , βn+k (we will refer to them as defects of type β).

I We choose any n squares from the black squares which share
an edge with the boundary and denote them by α1, α2, . . . , αn

(we refer to them as defects of type α).
I We consider regions of the type
ARa,b \ {β1, . . . , βn+k , α1, . . . , αn}, which are more general
than the type considered by Heffgott–Gessel.
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Graphical Condensation Aztec Rectangles

Preliminaries

We define the region ARk
a,b to be the region obtained from ARa.b

by adding a string of k unit squares along the boundary of the
southeastern side (γ defects) as shown in the figure below.

b

a
k

Figure: ARk
a,b with a = 4, b = 8, k = 4
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Graphical Condensation Aztec Rectangles

Main Theorem

Theorem (S.)

Assume that one of the two sides on which defects of type α can
occur does not actually have any defects on it. We assume this
to be the southwestern side.

Let δ1, . . . , δ2n+2k be the elements
of the set {β1, . . . , βn+k} ∪ {α1, . . . , αn} ∪ {γ1, . . . , γk} listed in
a cyclic order.
Then we have

M(ARa,b \ {β1, . . . , βn+k , α1, . . . , αn}) =

1
[M(ARk

a,b)]n−k+1
Pf[(M(ARk

a,b \ {δi , δj}))1≤i<j≤2n+2k ],

where all the terms on the right hand side are given by explicit
formulas.
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Graphical Condensation Aztec Rectangles

Proof

We need to show that each quantity on the right hand side can be
computed.

I M(ARk
a,b \ {βi , βj}) = 0,

I M(ARk
a,b \ {αi , αj}) = 0,

I M(ARk
a,b \ {γi , γj}) = 0,

I M(ARk
a,b \ {αi , γj}) = 0,

I M(ARk
a,b) is given by Aztec Diamond Theorem.
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Graphical Condensation Aztec Rectangles

M(ARk
a,b \ {βi , αj})

I It is given by the previous proposition (Aztec Diamond with
defects on adjacent sides) if βi is on the south-eastern side
and not above a γ defect;

I Otherwise it is 0,
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M(ARk
a,b \ {βi , αj})

I It is given by the previous proposition (Aztec Diamond with
defects on adjacent sides) if βi is on the south-eastern side
and not above a γ defect;

I Otherwise it is 0,
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Graphical Condensation Aztec Rectangles

M(ARk
a,b \ {βi , γj})

I It is given by Aztec Diamond Theorem if βi is above a γ
defect;

I It is given by the next proposition if the β defect is in the
northwestern side at a distance of more than k − 1 from the
western corner,
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Graphical Condensation Aztec Rectangles

Regions with defects

Proposition

Let 1 ≤ a ≤ b be positive integers with k = b − a > 0, then the
number of domino tilings of ARa,b(2, 3, . . . , k) with a defect on
the northwestern side in the i-th position counted from the west
corner as shown in the next figure is given by

2a(a+1)/2
min{i−1,k−1}∑

l=0

(
a− 1 + l

l

)(
a

a + 1− i + l

)
.
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Graphical Condensation Aztec Rectangles

Regions with defects contd.

k − 1

i

Figure: An a× b Aztec rectangle with defects marked in black; here
a = 4, b = 9.k = 5, i = 5
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Graphical Condensation Aztec Rectangles

M(ARk
a,b \ {βi , γj}) contd.

I It is given by the next proposition if the β defect is on the
southeastern side;

I Otherwise it is 0.
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Regions with defects contd.

Proposition

Let 1 ≤ a ≤ b be positive integers with k = b − a > 0, then the
number of domino tilings of ARa,b(j) with k − 1 squares added
to the southeastern side starting at the second position (and not
at the bottom) as shown in the following figure is given by

2a(a+1)/2

(j − k − 1)!

k−2∑
l=0

[(
b − l − 1
b − j

) j−k+l∏
i=l+2

(j − i)

]
. (2.2)
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Regions with defects contd.

jk-1

Figure: Aztec rectangle with k − 1 squares added on the southeastern
side and a defect on the j-th position shaded in black; here
a = 4, b = 10, k = 6, j = 8
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Remarks

I The proofs of the previous stated propositions, also uses Kuo
condensation in various cases.

I Mihai Ciucu and Ilse Fischer had looked at lozenge tilings of
hexagons with arbitrary boundary dents, our results are
motivated by their results.

I In their paper, Ciucu and Fischer find tilings of a hexagon with
dents on adjacent and opposite sides, they use some heavy
machinery to derive the results. We can do it in a simpler way
by using Kuo condensation in a clever manner.
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General Case

Theorem (S.)

Let β1, . . . , βn+k be arbitrary defects of type β and α1, . . . , αn be
arbitrary defects of type α along the boundary of ARa,b. Then
M(ARa,b\{β1, . . . , βn+k , α1, . . . , αn}) is equal to the Pfaffian of
a 2n×2n matrix whose entries are Pfaffians of (2k+2)×(2k+2)
matrices of the type in the statement of main theorem.
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Questions?

Thank you for your attention.
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