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Lattice Paths Inside a Square

Count the number of lattice paths, a1(n), from (0, 0) to (n, n)
using ‘east’ (0, 1) and ‘north’ (1, 0) steps, which never go below the
x = y diagonal.



Lattice Paths Inside a Square

Count the number of lattice paths, a1(n), from (0, 0) to (n, n)
using ‘east’ (0, 1) and ‘north’ (1, 0) steps, which never go below the
x = y diagonal.



Lattice Paths Inside a Square

Count the number of lattice paths, a1(n), from (0, 0) to (n, n)
using ‘east’ (0, 1) and ‘north’ (1, 0) steps, which never go below the
x = y diagonal.



Lattice Paths Inside a Square

Notice that reflecting each path in the previous slide across the
main diagonal produces a lattice path that remains strictly below it.

This bijection clearly shows that a1(n), the number of lattice paths
that do not fall below the diagonal is the same as a2(n), the
number of those that do not rise above it.
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Fillings of a Rectangular Grid

Count the number of ways a3(n), of filling a 2 × n grid with
elements from the set {1, 2, 3, . . . , 2n} such that all elements are
unique, increasing row-wise, and decreasing column-wise.



Fillings of a Rectangular Grid

Count the number of ways a3(n), of filling a 2 × n grid with
elements from the set {1, 2, 3, . . . , 2n} such that all elements are
unique, increasing row-wise, and decreasing column-wise.



Fillings of a Rectangular Grid

Count the number of ways a3(n), of filling a 2 × n grid with
elements from the set {1, 2, 3, . . . , 2n} such that all elements are
unique, increasing row-wise, and decreasing column-wise.



Dyck Paths

Count the number of Dyck paths a4(n), from (0, 0) to (2n, 0),
where, by a Dyck path we refer to the path admitted by a sequence
of up-moves, corresponding to (i , j) → (i + 1, j + 1) and
down-moves, corresponding to (i , j) → (i − 1, j − 1), which does
not go below the x-axis.



Dyck Paths

Count the number of Dyck paths a4(n), from (0, 0) to (2n, 0),
where, by a Dyck path we refer to the path admitted by a sequence
of up-moves, corresponding to (i , j) → (i + 1, j + 1) and
down-moves, corresponding to (i , j) → (i − 1, j − 1), which does
not go below the x-axis.



Dyck Paths

Count the number of Dyck paths a4(n), from (0, 0) to (2n, 0),
where, by a Dyck path we refer to the path admitted by a sequence
of up-moves, corresponding to (i , j) → (i + 1, j + 1) and
down-moves, corresponding to (i , j) → (i − 1, j − 1), which does
not go below the x-axis.



Non-intersecting chords

Count the number of ways a5(n), of joining n non-intersecting
chords on a circle marked with 2n points.
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Legal Parentheses

Count a6(n), the number of legal sequences of 2n parentheses,
where, by a legal sequence of parentheses we mean one in which the
parentheses can be properly matched, i.e., each opening parenthesis
should be matched to a closing one that lies further to its right.

n = 1 : ()

n = 2 : (()) , () ()

n = 3 : ((())) , () (()) , (()) () , () () ()
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Non-Crossing Matchings

Count a7(n), the number of non-crossing partitions on the set
[2n] := {1, 2, 3, . . . , 2n}, where by a non-crossing partition on [2n]
we refer to an arrangement of 2n points on a line, with n
non-intersecting arcs joining them.
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What is going on?

It seems that, for n = 1, 2, 3

a1(n) = a2(n) = a3(n) = a4(n) = a5(n) = a6(n) = a7(n).

In fact, they are equal in general.

Not only these 7 combinatorial objects, but more than 200+ other
objects are counted by the same numbers.
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Catalan Numbers

This talk deals with one of the most ubiquitous sequences in all of
mathematics, the Catalan numbers.

C0 = 1,C1 = 1,C2 = 2,C3 = 5,C4 = 14,C5 = 42, . . .

In general, they are given by either the recurrence

Cn+1 =
n∑

k=0

CkCn−k , C0 = 1,

or, by the formula

Cn =
1

n + 1

(
2n
n

)
.
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Easy Bijections

The first row keeps track of the E steps, while the second row
keeps track of the N steps.
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Triangulations of an n-gon

Historically, Catalan numbers appeared in the following sense.

A triangulation of a convex polygon with n + 2 vertices Pn+2, is a
set of n− 1 diagonals that do not cross each other in the interior of
Pn+2.

The sequence Cn which counts the the number of triangulations of
Pn+2 is called the sequence of Catalan numbers.

We now prove the recurrence

Cn+1 =
n∑

k=0

CkCn−k .
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Triangulations of an n-gon

Let Pn+3 be an n + 3 convex
polygon with vertices
A1, . . . ,An+3. Next, pick an
arbitrary vertex Ak and consider
the triangle ∆A1An+3Ak .
Notice how this choice splits
Pn+3 into two convex polygons.
One with k vertices (marked
red) and the one with n − k + 4
vertices (marked blue). Since k
is allowed to vary from 2 to

n + 2, we have
n+2∑
k=2

Ck−2Cn−k+2

ways to triangulate Pn+3.
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Some History

▶ Catalan numbers are named after Eugène Catalan
(1814–1894), though they were computed by Leonhard Euler.

▶ September 4, 1751 letter, from Euler to Goldbach: Near
the end of the letter, Euler writes matter of factly, that he
figured out the numbers of triangulations of the polygons with
at most 10 sides. He does this by hand and then takes ratios
of successive numbers to guess the general product formula.

▶ He continues to guess (correctly) a closed algebraic formula for
the g.f. of the Catalan numbers sequence.

▶ October 16, 1751 letter, from Goldbach to Euler: Here
Goldbach suggests there is a way to verify Euler’s g.f. formula
by algebraic manipulations. Essentially, he rewrote Euler’s
formula for the g.f. for Catalan numbers as a quadratic
equation for power series.

▶ December 4, 1751 letter, from Goldbach to Euler: Euler
uses the binomial theorem to show that the generating
function formula indeed implies his product formula for the
Catalan numbers.
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What is the g.f.?

Let

C (x) =
∞∑
n=0

Cnx
n

be the generating function corresponding to the Catalan numbers.

By the recurrence,

C (x) =
∞∑
n=0

n−1∑
k=0

CkCn−1−kx
n = 1 + xC (x)2.

Solving for C (x) gives

C (x) =
1 ±

√
1 − 4x

2x
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Catalan Trees

A binary tree is defined recursively as follows:
▶ The empty set ϕ is a binary tree.
▶ Otherwise a binary tree has a root vertex v , a left subtree T1,

and a right subtree T2, both of which are binary trees.
A plane tree P may be defined recursively as follow:
▶ One specially designated vertex v is called the root of P . Thus

plane trees, cannot be empty.
▶ Then either P consists of the single vertex v , or else it has a

sequence (P1, . . . ,Pm) each of which is a plane tree. Thus the
subtrees of each vertex are linearly ordered.
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A plane tree P may be defined recursively as follow:
▶ One specially designated vertex v is called the root of P . Thus

plane trees, cannot be empty.
▶ Then either P consists of the single vertex v , or else it has a

sequence (P1, . . . ,Pm) each of which is a plane tree. Thus the
subtrees of each vertex are linearly ordered.
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Catalan Again

# Binary trees with n vertices = # Plane trees with n + 1 vertices.

Both of these equal to Cn!

Remove the root vertex and all edges, then remove every edge that
is not the leftmost edge from a vertex. Draw edges from each child
w of a vertex v of P to the next child (the one immediately to the
right of w) of v (if such a child exists). These are the right edges
of B .
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q-Combinatorics

The idea here is to count objects with weights associated with
them. For instance in a lattice path, one might be interested in
assigning the number of blocks spanned below the said path and/or
the number of east steps below the main diagonal. We shall start
our discussion by counting all possible inversions on the set [n].

Let σ be a bijection on [n]. An inversion of σ is a tuple (σ(i), σ(j))
such that 1 ≤ i < j ≤ n and σ(i) > σ(j).
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Inversions

Permutation Inversions Remark
(123) No Inversions Trivial
(132) (32) 2 < 3 but 3 > 2
(213) (21) 1 < 2 but 2 > 1
(231) (21), (31) Same As Above
(312) (31), (32) Same As Above
(321) (32), (31), (21) –

If In denote the number of inversions on [n], then In =

(
n

2

)
n!

2
.
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Proof

For an n given to us, consider all the n! possible permutations on
the set [n] arranged in pairs like

(σ(1)σ(2) · · ·σ(n)), (σ(n), σ(n − 1), · · · , σ(1))︸ ︷︷ ︸
called the mate of σ

.

This arrangement separates the n! permutations into n!/2 pairs.
Now, by the following observations we are done.

1. If (σ(i), σ(j)) is an inversion of σ, then it’s not an inversion of
σ’s mate.

2. Each one of the
(
n

2

)
pairs is an inversion exactly once in each

couple.
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q-Counting

In the formal variable q, we define the inversion polynomial on [n]
as ∑

σ∈Sn

qinvσ

where inv(σ) denotes the number of inversions of σ. As an
example, we compute the inversion polynomial on the set [3].

Permutation Inversions qinv(σ)

(123) No Inversions q0

(132) (32) q1

(213) (21) q1

(231) (21), (31) q2

(312) (31), (32) q2

(321) (32), (31), (21) q3

(1 + q)(1 + q + q2)
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Towards a formula

Permutation Inversions qinv(σ)

(4123) (41), (42), (43) q0+3

(4132) (41), (43), (42), (32) q1+3

(4213) (42), (41), (43), (21) q1+3

(4231) (42), (43), (41), (21), (31) q2+3

(4312) (43), (41), (42), (31), (32) q2+3

(4321) (43), (42), (41), (32), (31), (21) q3+3

q3 ((1 + q)(1 + q + q2))︸ ︷︷ ︸
Inversion polynomial of S3

Do this for all positions, to get

(1 + q)(1 + q + q2)(1 + q + q2 + q3)
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q-analogs

∑
σ∈Sn

qinv(σ) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)

=
1 − q

1 − q
· 1 − q2

1 − q
· 1 − q3

1 − q
· · · 1 − qn

1 − q

= [1]q[2]q · · · [n]q
= n!q

For appropriate choices of n and k , we denote the q-analogue of(
n

k

)
by (

n

k

)
q

=
n!q

(n − k)!qk!q
.
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What is the q-analog of Cn?

There are two choices:
▶ Either the formula for Cn,
▶ Or, the recurrence for Cn+1.

Amazingly, both give rise to two different objects.

Let σ be a permutation on [n]. An integer 1 ≤ i ≤ n − 1 is called a
descent of σ if σ(i) > σ(i + 1). The set of all descents of a
permutation is called its descent set.

For instance the descent set of (613524) is {1, 4}.

The major index of a permutation is the sum of all the elements in
the descent set. Example above has a major index of 5.∑

σ∈Sn

qmaj(σ) = n!q.
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q-Catalan Recurrence

If we set Cn(q) =
∑

π∈L+ qarea(π), then

Cn(q) =
n∑

k=1

qk−1Ck(q)Cn−k(q).
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Quotable Quotes

It is not exaggerated to say that the Catalan numbers are the most
prominent sequence in combinatorics. – Manuel Kauers and Peter
Paule

Mathematicians are often amazed that certain mathematical
objects (numbers, sequences, etc.) show up so often. For example,
in enumerative combinatorics, we encounter the Fibonacci and
Catalan sequences in many problems that seem to have nothing to
do with each other. [..] The answer, once again, is our human
predilection for triviality. [..] The Catalan sequence is the simplest
sequence whose generating function is a (genuine) algebraic formal
power series. – Doron Zeilberger
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predilection for triviality. [..] The Catalan sequence is the simplest
sequence whose generating function is a (genuine) algebraic formal
power series. – Doron Zeilberger
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Catalan numbers are even more fascinating [than the Fibonacci
numbers]. Like the North Star in the evening sky, they are a
beautiful and bright light in the mathematical heavens. They
continue to provide a fertile ground for number theorists, especially,
Catalan enthusiasts and computer scientists. – Thomas Koshy

I’d have to say my favorite number sequence is the Catalan
numbers. [..] Catalan numbers just come up so many times. It was
well-known before me that they had many different combinatorial
interpretations. [..] When I started teaching enumerative
combinatorics, of course I did the Catalan numbers. When I started
doing these very basic interpretations – any enumerative course
would have some of this – I just liked collecting more and more of
them and I decided to be systematic. – Richard Stanley
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Thank you for your attention!


