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Partitions

We define a partition A of a non-negative integer n to be an integer

sequence (Aq1,...,Az) such that
>)\12)\22---2M>0and,
> Zle )\,’ = n.

We say that )\ is a partition of n, denoted by A - n.
The set of partition of n is denoted by P(n) and |P(n)| = p(n).

For example, there are 5 partitions of 4:
4,341,242,24+1+1,14+1+1+1,

so p(4) = 5.
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Generating Functions
Let us denote the generating function of p(n) by P(q).

n>0
Here, p(0) = 1.
Euler proved that
1
P pr—
@=[11=5
i>1
We use the standard notations
n—1 )
(a:q)n:= [ [(1 - aq’),
i=0

and
(3, 9)oo := lim (a; ).

n—oo

For brevity, we set f, := (g; ¢") 0.
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An overpartition of a nonnegative integer n is a non-increasing sequence
of natural numbers whose sum is n, where the first occurrence (or
equivalently, the last occurrence) of a number may be overlined.

The eight overpartitions of 3 are
3,3,2+1,24+1,2+1,24+1,1+1+1, and 1 +1+1.

The number of overpartitions of n is denoted by p(n) and its generating

function is given by
. b
>_P(ne"= .
n>0 1

Formally, first studied by Corteel and Lovejoy (but appeared earlier, as
well).
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Overpartition k-tuples

An overpartition k-tuple of n is a k-tuple of overpartitions (1, &, - . -, k)
such that the sum of the parts of ;s equals n.

The generating function for the number of overpartition k-tuples of n,
denoted by B, (n) is given by

> i
pk ok
n>0 f

The arithmetic properties were first studied by Keister, Sellers, and Vary.
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Overpartition k-tuples with odd parts

We can similarly define an overpartition k-tuple of n with odd parts to be

an overpartition k-tuple (§1,£2,...,&x) of n where all parts of ;'s are
odd.

The generating function for the number of overpartition k-tuples of n
with odd parts, denoted by OPT (n) is given by

f3k

OPT(n)q" = 2
;) 1.’12kf4k

> the case k = 1 was first studied by Hirschhorn and Sellers,
» the case k = 2 has also been studied, first by Lin,

» the case k = 3 was recently studied by Drema and N. Saikia,
» the cases k > 4 had not been studied before.
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Motivation

A notable topic in the world of g-series revolves around the arithmetic
properties of the coefficients c(n) generated by

> elmg =T](F0)".

n>0 é

We look for congruences of the form
c(An+B)=C (mod M),

holding for any n > 0, in which the modulus M and the parameters A, B
and C are fixed, with C usually being 0.

8/26



Ramanujan’s Congruences

9/26



Ramanujan’s Congruences

The study of this problem was initiated by the celebrated congruences
modulo 5, 7 and 11 due to Ramanujan for p(n).

9/26



Ramanujan’s Congruences

The study of this problem was initiated by the celebrated congruences
modulo 5, 7 and 11 due to Ramanujan for p(n).

Such congruences were later extended to moduli of an arbitrary power of
5, 7 and 11 as conjectured by Ramanujan:

9/26



Ramanujan’s Congruences

The study of this problem was initiated by the celebrated congruences
modulo 5, 7 and 11 due to Ramanujan for p(n).

Such congruences were later extended to moduli of an arbitrary power of
5, 7 and 11 as conjectured by Ramanujan: For £ € {5,7,11} and a > 1,

o _]0 (mod £%) £=15,11,
p(E1+bot) = {0 (mod 7/%2°1) L=17,

with 0 < 6,0 < €% — 1 being such that

2464, =1 (mod £°).

9/26



Ramanujan’s Congruences

The study of this problem was initiated by the celebrated congruences
modulo 5, 7 and 11 due to Ramanujan for p(n).

Such congruences were later extended to moduli of an arbitrary power of
5, 7 and 11 as conjectured by Ramanujan: For £ € {5,7,11} and a > 1,

o _]0 (mod £%) £=15,11,
p(E1+bot) = {0 (mod 7/%2°1) L=17,

with 0 < 6,0 < €% — 1 being such that
2464, =1 (mod £°).

Watson proved the cases of powers of 5 and 7, while Atkin confirmed the
case of powers of 11.
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Known results for k = 3
In 2023, Drema and Saikia proved some infinite families of congruences
modulo small powers of 2 and 3.

Some examples follow: If p is an odd prime satisfying (%) = —1, and

r is any integer with 1 < r < p — 1, then for all integers a > 0, we have

OPT3(16n+14) =0 (mod 8),
OPT5(16 - p***(pn+r) +6- p?©TV) =0 (mod 8).

For any integer n > 0, we have

OPT3(3n+i)=0 (mod 3),
OPT3(24(3n+j)+3)=0 (mod 3),

where i = j =1,2.
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New results for k = 3 (SSS)

For all n > 0,a > 0, we have
OPT3(2*(4n+3)) =0 (mod 4),
OPT3(2%(8n+5)) =0 (mod 8),
OPT3(2*(8n+7)) =0 (mod 16).

The last congruence, generalizes Drema and Saikia's result.

We also have some infinite families: If p > 3 is a prime, then for all
n>0,a>0andé >0, we have

OPT3(2-3%* - p**(pn+t) +3° - p"®*V) =0 (mod 4),

where t € {1,2,...,p—1}.

A similar result also holds for k =3 (mod 8), k =4 (mod 16), and for
odd k (mod 4).
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Results for arbritary k (SSS)

We can prove congruences modulo high powers of 2 for arbritary k: Let
k = (2™)r with m > 0 and r odd. Then for all n > 1 we have

OPT(n)=0 (mod 2m*1).
Proof. We have the following

. 0 14 g2+t k
ZOPT"(”)C’ :H <1_q2/+1 -

n>0 i=1

—

(1+q2i+1>2m]'
— 2it1
p\l—q

sg2it1 \ 2"
14 9 .
1— q2l+1

1

a

8

Il
-
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Results for arbritary k (SSS)

We can prove congruences modulo high powers of 2 for arbritary k: Let
k = (2™)r with m > 0 and r odd. Then for all n > 1 we have

OPT(n)=0 (mod 2m*1).

Proof. We have the following

. k r
1 4 q2l+1 1 + q21+1
Z OPTy(n)q" = H <1 i)~ H 1 gt
n>0 i=1

o0 . 2RI+ 2m’
H + 1— g2itt

i=1

Using the binomial theorem and a lemma (involving congruences of
binomial coefficients), we can conclude

> OPTy(n)g"=1 (mod 27"1).

n>0
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» Forall n> 0 and kK > 1 we have

ngﬂ(n) = Wl(n) (mod 4).

» Foralln>0, k>0, p(>5) prime, and all quadratic nonresidues r
modulo p with 1 < r < p — 1 we have

OPTok11(2pn+ R)=0 (mod 4)

where

R:{r, if r is odd,

p+r, if riseven.
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For all n > 0 and k > 0, we have

OPT244+1(8n+1)=0 (mod 2),
OPT4+1(8n+2) =0 (mod 2),
OPT211(8n+3)=0 (mod 4),
OPTo41(8n+4)=0 (mod 2),
OPT244+1(8n+5)=0 (mod 8),
OPT241(8n+6) =0 (mod 4),
OPTok1(8n+7) =0 (mod 16).

A sketch proof follows.
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We use the following result: For all odd t > 1, we have
7 .
(B(a)¢(a*)B(a*)*)' =D 2@’ Fei(a®),
Jj=0

where F; ;(q®) is a function of g% whose power series representation has
integer coefficients, and the following divisibilities hold:

a1 =0 (mod 2), a2 =0 (mod 2),
a;3=0 (mod 4), ara =0 (mod 2),
a5 =0 (mod 8), a6 =0 (mod 4),
a;7=0 (mod 16),
with
(o)
$la)= > d°=1+2> ¢q"
k=—o0 n>1
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Sketch Proof contd. (SSS)

The generating function for OPT ,(n) for any odd t is given by

> OPT(n)q" = ¢(q)'d(a°) ¢(a")*¢(a°)"

n>0

sN27ht
Since (]_[,->3 #(q? )) is a function of g®, it is enough to do the
8-dissection of the first three terms. We see that

ST OPT(n)a" = $(a)'$(a®)'3(a*) é(c®)* - ,
n>0

(ZathJFU > <H¢q )> | :

The result now follows easily from the lemma.
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Based on numerical evidence, we conjectured the following: For all i > 1,

n> 0 and odd r, we have
OPT,i,(8n+1)=0
OPT,,(8n+2)=0 (mod 22*1),
OPT,(8n+3)=0 (mod 2773),

(mod 21,
(
(
OPT,(8n+4)=0 (mod 22 %),
(
(
(

3

OPT,,(8n+5)=0 (mod 2?),
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What about 2k? (SSS)

Based on numerical evidence, we conjectured the following: For all i > 1,
n> 0 and odd r, we have

OPT5,(8n+1)=0 (mod 2'*1),
OPT,,(8n+2)=0 (mod 22 *1),
OPT4,(8n+3)=0 (mod 2'"3),
OPT,(8n+4)=0 (mod 22 %),
OPT,,(8n+5)=0 (mod 2/*2),
OPT4,(8n+6)=0 (mod 22"3),
OPT,(8n+7)=0 (mod 27",

We can now prove some cases of the above.
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Results for 2k (DSSS)

For all i > 1, n> 0 and odd r, we have

OPT,(8n+1)=0 (mod 21),
OPT,(4n+3) =0 (mod 23),
OPT,,(8n+5)=0 (mod 2'"2).

Notice, one case is better than the previous version in the conjecture.
» The first case follows immediately from a previous observation.

» The second case uses tricky case by case analysis of divisibility of
binomial coefficients.

» The third case follows from the following: Let kK =2™r, m > 0 and
r be odd, then for all n > 1 we have

OPsz,(n) =

2m+1 (mod 2™*+2) if nis sq, 2x sq or 4x sq,
0 (mod 2™2) otherwise.
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Using the theory of modular forms, we also have some of the other cases.

Forall1<i<5,re{1,3,5} and n> 0, we have

OPT,i,(8n+2)=0 (mod 2211),
OPT,(8n+4)=0 (mod 22'*3),
OPT,,(8n+6) =0 (mod 22 *3).

And results, such as the following: Let k be a fixed positive integer with
k > 4 and p (# 3) be a prime, then OPT3(n) is almost always divisible
by p¥, that is

i [{n < X : OPT3(n)=0 (mod pX)}|
X—00 X

=1
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For all i > 1 and n > 0, we have
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Congruences modulo multiples of 3 (DSSS)

So far, we have only seen results (mod 2¢). We also have some more
results such as the following.

For all n > 0, we have

OPT3(3n+1)=0 (mod 6),
OPT3(12n+7) =0 (mod 12),
OPT;3(12n+10) =0 (mod 12),
OPT3(3n+2)=0 (mod 18),
OPT;3(6n+5)=0 (mod 36),
OPT3(24n+23) =0 (mod 144).

For all i > 1 and n > 0, we have

OPT3(3n+2)=0 (mod 3).
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Strong evidence suggests the following are also true:
» For all /,j > 1 and k not a multiple of 2 or 3, we have

OPT3.54(3n4+2) =0 (mod 31 .2/72).

» For all /,j > 1 and k not a multiple of 2 or 3, we have

OPT3i..4(3n+1)=0 (mod 3. 2/*1).

We have proofs for several cases, and a conjectured lemma which would
give the proof for all cases.
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( )) =0 (mod 23F22),

( )) 0 (mod 23a+2i+2 )

( ))=0

(mod 23a+2i).

This is stronger than the conjecture from SSS, and generalizes some
results of Adiga and Dasappa (for the case k =1,/ = 1) and DSSS (for
the case a = 1). Again, we have proofs for several cases of this.
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OPT2k11(2%(8n+3)) =0 (mod 4),
OPT2k+1(2%(8n+4)) =0 (mod 2),
OPTo:1(2%(8n+5)) =0 (mod 8),
OPT2k11(2%(8n+6)) =0 (mod 4),
OPT211(2%(8n+7)) =0 (mod 16)

This generalizes the results of SSS.
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Internal Congruences

We are also interested in internal congruences of the form
c(An+B)=c(A'n+ B') (mod M),

and we expect that the above two quantities are not congruent to a fixed

number modulo M for all n, so as to make this relation more nontrivial.

In many cases, the sequence A'n+ B’ is rendered as a subsequence of
An+ B, and such an internal congruence usually allows us to derive an
infinite family of congruences under the fixed modulus M.

Internal congruences modulo an arbitrary power of a number are not
known widely.
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What about internal congruences?

Some proofs of SSS unearthed the following: for all n > 1 and
i€{1,2,3},

OPT3(2'n) = OPT3(27'n) (mod 2'1).

It looks likely that this is true for general i.

We also have: For all n > 1, we have

OPT4(2I7) =2 OPTg(n)

This doesn’t seem to generalize as easily.
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Thank you for your attention!
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