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▶ Arithmetic Properties Modulo Powers of 2 for Overpartition
k-Tuples with Odd Parts (with A. Sarma and J. A. Sellers) out on
arXiv: 2312.12011 (denoted by SSS)

▶ Arithmetic Properties for Overpartition k-tuples with Odd Parts
(with H. Das, A. Sarma, and J. A. Sellers) soon to be out (denoted
by DSSS)
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Partitions

We define a partition � of a non-negative integer n to be an integer
sequence (�1; : : : ; �`) such that
▶ �1 � �2 � � � � � �` > 0 and,
▶
P`

i=1 �i = n.
We say that � is a partition of n, denoted by � ` n.

The set of partition of n is denoted by P(n) and jP(n)j = p(n).

For example, there are 5 partitions of 4:

4; 3 + 1; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1;

so p(4) = 5.
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Generating Functions

Let us denote the generating function of p(n) by P(q).

P(q) :=
X
n�0

p(n)qn:

Here, p(0) = 1.

Euler proved that

P(q) =
Y
i�1

1
1� qi

:

We use the standard notations

(a; q)n :=
n�1Y
i=0

(1� aqi );

and
(a; q)1 := lim

n!1
(a; q)n:

For brevity, we set fk := (qk ; qk)1.

4 / 26



Generating Functions
Let us denote the generating function of p(n) by P(q).

P(q) :=
X
n�0

p(n)qn:

Here, p(0) = 1.

Euler proved that

P(q) =
Y
i�1

1
1� qi

:

We use the standard notations

(a; q)n :=
n�1Y
i=0

(1� aqi );

and
(a; q)1 := lim

n!1
(a; q)n:

For brevity, we set fk := (qk ; qk)1.

4 / 26



Generating Functions
Let us denote the generating function of p(n) by P(q).

P(q) :=
X
n�0

p(n)qn:

Here, p(0) = 1.

Euler proved that

P(q) =
Y
i�1

1
1� qi

:

We use the standard notations

(a; q)n :=
n�1Y
i=0

(1� aqi );

and
(a; q)1 := lim

n!1
(a; q)n:

For brevity, we set fk := (qk ; qk)1.

4 / 26



Generating Functions
Let us denote the generating function of p(n) by P(q).

P(q) :=
X
n�0

p(n)qn:

Here, p(0) = 1.

Euler proved that

P(q) =
Y
i�1

1
1� qi

:

We use the standard notations

(a; q)n :=
n�1Y
i=0

(1� aqi );

and
(a; q)1 := lim

n!1
(a; q)n:

For brevity, we set fk := (qk ; qk)1.

4 / 26



Generating Functions
Let us denote the generating function of p(n) by P(q).

P(q) :=
X
n�0

p(n)qn:

Here, p(0) = 1.

Euler proved that

P(q) =
Y
i�1

1
1� qi

:

We use the standard notations

(a; q)n :=
n�1Y
i=0

(1� aqi );

and
(a; q)1 := lim

n!1
(a; q)n:

For brevity, we set fk := (qk ; qk)1.

4 / 26



Generating Functions
Let us denote the generating function of p(n) by P(q).

P(q) :=
X
n�0

p(n)qn:

Here, p(0) = 1.

Euler proved that

P(q) =
Y
i�1

1
1� qi

:

We use the standard notations

(a; q)n :=
n�1Y
i=0

(1� aqi );

and
(a; q)1 := lim

n!1
(a; q)n:

For brevity, we set fk := (qk ; qk)1.
4 / 26



Overpartitions

An overpartition of a nonnegative integer n is a non-increasing sequence
of natural numbers whose sum is n, where the first occurrence (or
equivalently, the last occurrence) of a number may be overlined.

The eight overpartitions of 3 are

3; 3̄; 2 + 1; 2̄ + 1; 2 + 1̄; 2̄ + 1̄; 1 + 1 + 1; and 1̄ + 1 + 1:

The number of overpartitions of n is denoted by p(n) and its generating
function is given by X

n�0

p(n)qn =
f2
f 2
1
:

Formally, first studied by Corteel and Lovejoy (but appeared earlier, as
well).
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Overpartition k-tuples

An overpartition k-tuple of n is a k-tuple of overpartitions (�1; �2; : : : ; �k)
such that the sum of the parts of �i ’s equals n.

The generating function for the number of overpartition k-tuples of n,
denoted by pk(n) is given by

X
n�0

pk(n)q
n =

f k2
f 2k
1

:

The arithmetic properties were first studied by Keister, Sellers, and Vary.
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Overpartition k-tuples with odd parts

We can similarly define an overpartition k-tuple of n with odd parts to be
an overpartition k-tuple (�1; �2; : : : ; �k) of n where all parts of �i ’s are
odd.

The generating function for the number of overpartition k-tuples of n
with odd parts, denoted by OPT k(n) is given by

X
n�0

OPT k(n)q
n =

f 3k
2

f 2k
1 f k4

:

▶ the case k = 1 was first studied by Hirschhorn and Sellers,
▶ the case k = 2 has also been studied, first by Lin,
▶ the case k = 3 was recently studied by Drema and N. Saikia,
▶ the cases k � 4 had not been studied before.

7 / 26



Overpartition k-tuples with odd parts

We can similarly define an overpartition k-tuple of n with odd parts to be
an overpartition k-tuple (�1; �2; : : : ; �k) of n where all parts of �i ’s are
odd.

The generating function for the number of overpartition k-tuples of n
with odd parts, denoted by OPT k(n) is given by

X
n�0

OPT k(n)q
n =

f 3k
2

f 2k
1 f k4

:

▶ the case k = 1 was first studied by Hirschhorn and Sellers,
▶ the case k = 2 has also been studied, first by Lin,
▶ the case k = 3 was recently studied by Drema and N. Saikia,
▶ the cases k � 4 had not been studied before.

7 / 26



Overpartition k-tuples with odd parts

We can similarly define an overpartition k-tuple of n with odd parts to be
an overpartition k-tuple (�1; �2; : : : ; �k) of n where all parts of �i ’s are
odd.

The generating function for the number of overpartition k-tuples of n
with odd parts, denoted by OPT k(n) is given by

X
n�0

OPT k(n)q
n =

f 3k
2

f 2k
1 f k4

:

▶ the case k = 1 was first studied by Hirschhorn and Sellers,
▶ the case k = 2 has also been studied, first by Lin,
▶ the case k = 3 was recently studied by Drema and N. Saikia,
▶ the cases k � 4 had not been studied before.

7 / 26



Overpartition k-tuples with odd parts

We can similarly define an overpartition k-tuple of n with odd parts to be
an overpartition k-tuple (�1; �2; : : : ; �k) of n where all parts of �i ’s are
odd.

The generating function for the number of overpartition k-tuples of n
with odd parts, denoted by OPT k(n) is given by

X
n�0

OPT k(n)q
n =

f 3k
2

f 2k
1 f k4

:

▶ the case k = 1 was first studied by Hirschhorn and Sellers,

▶ the case k = 2 has also been studied, first by Lin,
▶ the case k = 3 was recently studied by Drema and N. Saikia,
▶ the cases k � 4 had not been studied before.

7 / 26



Overpartition k-tuples with odd parts

We can similarly define an overpartition k-tuple of n with odd parts to be
an overpartition k-tuple (�1; �2; : : : ; �k) of n where all parts of �i ’s are
odd.

The generating function for the number of overpartition k-tuples of n
with odd parts, denoted by OPT k(n) is given by

X
n�0

OPT k(n)q
n =

f 3k
2

f 2k
1 f k4

:

▶ the case k = 1 was first studied by Hirschhorn and Sellers,
▶ the case k = 2 has also been studied, first by Lin,

▶ the case k = 3 was recently studied by Drema and N. Saikia,
▶ the cases k � 4 had not been studied before.

7 / 26



Overpartition k-tuples with odd parts

We can similarly define an overpartition k-tuple of n with odd parts to be
an overpartition k-tuple (�1; �2; : : : ; �k) of n where all parts of �i ’s are
odd.

The generating function for the number of overpartition k-tuples of n
with odd parts, denoted by OPT k(n) is given by

X
n�0

OPT k(n)q
n =

f 3k
2

f 2k
1 f k4

:

▶ the case k = 1 was first studied by Hirschhorn and Sellers,
▶ the case k = 2 has also been studied, first by Lin,
▶ the case k = 3 was recently studied by Drema and N. Saikia,

▶ the cases k � 4 had not been studied before.

7 / 26



Overpartition k-tuples with odd parts

We can similarly define an overpartition k-tuple of n with odd parts to be
an overpartition k-tuple (�1; �2; : : : ; �k) of n where all parts of �i ’s are
odd.

The generating function for the number of overpartition k-tuples of n
with odd parts, denoted by OPT k(n) is given by

X
n�0

OPT k(n)q
n =

f 3k
2

f 2k
1 f k4

:

▶ the case k = 1 was first studied by Hirschhorn and Sellers,
▶ the case k = 2 has also been studied, first by Lin,
▶ the case k = 3 was recently studied by Drema and N. Saikia,
▶ the cases k � 4 had not been studied before.

7 / 26



Motivation

A notable topic in the world of q-series revolves around the arithmetic
properties of the coefficients c(n) generated byX

n�0

c(n)qn :=
Y
�

(f �)r� :

We look for congruences of the form

c(An + B) � C (mod M);

holding for any n � 0, in which the modulus M and the parameters A, B
and C are fixed, with C usually being 0.
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Ramanujan’s Congruences

The study of this problem was initiated by the celebrated congruences
modulo 5, 7 and 11 due to Ramanujan for p(n).

Such congruences were later extended to moduli of an arbitrary power of
5, 7 and 11 as conjectured by Ramanujan: For ` 2 f5; 7; 11g and � � 1,

p
�
`�n + ��;`

�
�

(
0 (mod `�) ` = 5; 11;
0 (mod 7d

�+1
2 e) ` = 7;

with 0 � ��;` � `� � 1 being such that

24��;` � 1 (mod `�):

Watson proved the cases of powers of 5 and 7, while Atkin confirmed the
case of powers of 11.
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Known results for k = 3

In 2023, Drema and Saikia proved some infinite families of congruences
modulo small powers of 2 and 3.

Some examples follow: If p is an odd prime satisfying
�
�2
p

�
= �1, and

r is any integer with 1 � r � p � 1, then for all integers � � 0, we have

OPT 3(16n + 14) � 0 (mod 8);

OPT 3(16 � p2�+1(pn + r) + 6 � p2(�+1)) � 0 (mod 8):

For any integer n � 0, we have

OPT 3(3n + i) � 0 (mod 3);

OPT 3(24(3n + j) + 3) � 0 (mod 3);

where i = j = 1; 2:
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New results for k = 3 (SSS)

For all n � 0; � � 0, we have

OPT 3(2�(4n + 3)) � 0 (mod 4);

OPT 3(2�(8n + 5)) � 0 (mod 8);

OPT 3(2�(8n + 7)) � 0 (mod 16):

The last congruence, generalizes Drema and Saikia’s result.

We also have some infinite families: If p � 3 is a prime, then for all
n � 0, � � 0 and � � 0, we have

OPT 3(2 � 32� � p2�+1(pn + t) + 32� � p2(�+1)) � 0 (mod 4);

where t 2 f1; 2; : : : ; p � 1g.

A similar result also holds for k = 3 (mod 8), k = 4 (mod 16), and for
odd k (mod 4).
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Results for arbritary k (SSS)

We can prove congruences modulo high powers of 2 for arbritary k : Let
k = (2m)r with m > 0 and r odd. Then for all n � 1 we have

OPT k(n) � 0 (mod 2m+1):

Proof. We have the following

X
n�0

OPT k(n)q
n =

1Y
i=1

�
1 + q2i+1

1� q2i+1

�k

=

"
1Y
i=1

�
1 + q2i+1

1� q2i+1

�2m#r

=

"
1Y
i=1

�
1 +

2q2i+1

1� q2i+1

�2m#r
:

Using the binomial theorem and a lemma (involving congruences of
binomial coefficients), we can concludeX

n�0

OPT k(n)q
n � 1 (mod 2m+1):
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Results for 2k + 1 (SSS)

▶ For all n � 0 and k � 1 we have

OPT 2k+1(n) � OPT 1(n) (mod 4):

▶ For all n � 0, k � 0, p (� 5) prime, and all quadratic nonresidues r
modulo p with 1 � r � p � 1 we have

OPT 2k+1(2pn + R) � 0 (mod 4)

where

R =

(
r ; if r is odd,
p + r ; if r is even.
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Results for 2k + 1 contd. (SSS)

For all n � 0 and k � 0, we have

OPT 2k+1(8n + 1) � 0 (mod 2);

OPT 2k+1(8n + 2) � 0 (mod 2);

OPT 2k+1(8n + 3) � 0 (mod 4);

OPT 2k+1(8n + 4) � 0 (mod 2);

OPT 2k+1(8n + 5) � 0 (mod 8);

OPT 2k+1(8n + 6) � 0 (mod 4);

OPT 2k+1(8n + 7) � 0 (mod 16):

A sketch proof follows.
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Sketch Proof (SSS)

We use the following result: For all odd t � 1, we have

(�(q)�(q2)�(q4)2)t =
7X

j=0

at;jq
jFt;j(q

8);

where Ft;j(q
8) is a function of q8 whose power series representation has

integer coefficients, and the following divisibilities hold:

at;1 � 0 (mod 2); at;2 � 0 (mod 2);
at;3 � 0 (mod 4); at;4 � 0 (mod 2);
at;5 � 0 (mod 8); at;6 � 0 (mod 4);
at;7 � 0 (mod 16);

with

�(q) :=
1X

k=�1

qk
2
= 1 + 2

X
n�1

qn
2
:
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Sketch Proof contd. (SSS)

The generating function for OPT k(n) for any odd t is given byX
n�0

OPT t(n)q
n = �(q)t�(q2)t�(q4)2t�(q8)4t � � �

Since
�Q

i�3 �(q
2i

)
�2i�1�t

is a function of q8, it is enough to do the
8-dissection of the first three terms. We see thatX

n�0

OPT t(n)q
n = �(q)t�(q2)t�(q4)2t�(q8)4t � � � ;

=

0
@ 7X

j=0

at;jq
jFt;j(q

8)

1
A
0
@Y

i�3

�(q2i

)

1
A

2i�1�t

:

The result now follows easily from the lemma.
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What about 2k? (SSS)

Based on numerical evidence, we conjectured the following: For all i � 1,
n � 0 and odd r , we have

OPT 2i r (8n + 1) � 0 (mod 2i+1);

OPT 2i r (8n + 2) � 0 (mod 22i+1);

OPT 2i r (8n + 3) � 0 (mod 2i+3);

OPT 2i r (8n + 4) � 0 (mod 22i+4);

OPT 2i r (8n + 5) � 0 (mod 2i+2);

OPT 2i r (8n + 6) � 0 (mod 22i+3);

OPT 2i r (8n + 7) � 0 (mod 2i+4):

We can now prove some cases of the above.
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Results for 2k (DSSS)

For all i � 1, n � 0 and odd r , we have

OPT 2i r (8n + 1) � 0 (mod 2i+1);

OPT 2i r (4n + 3) � 0 (mod 2i+3);

OPT 2i r (8n + 5) � 0 (mod 2i+2):

Notice, one case is better than the previous version in the conjecture.
▶ The first case follows immediately from a previous observation.
▶ The second case uses tricky case by case analysis of divisibility of

binomial coefficients.
▶ The third case follows from the following: Let k = 2mr , m > 0 and

r be odd, then for all n � 1 we have

OPT 2mr (n) �

(
2m+1 (mod 2m+2) if n is sq, 2� sq or 4� sq,
0 (mod 2m+2) otherwise:
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Results using modular forms (DSSS)

Using the theory of modular forms, we also have some of the other cases.

For all 1 � i � 5, r 2 f1; 3; 5g and n � 0, we have

OPT 2i r (8n + 2) � 0 (mod 22i+1);

OPT 2i r (8n + 4) � 0 (mod 22i+3);

OPT 2i r (8n + 6) � 0 (mod 22i+3):

And results, such as the following: Let k be a fixed positive integer with
k � 4 and p (6= 3) be a prime, then OPT 3(n) is almost always divisible
by pk , that is

lim
X!1

jfn � X : OPT 3(n) � 0 (mod pk)gj

X
= 1:
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Congruences modulo multiples of 3 (DSSS)

So far, we have only seen results (mod 2`). We also have some more
results such as the following.

For all n � 0, we have

OPT 3(3n + 1) � 0 (mod 6);

OPT 3(12n + 7) � 0 (mod 12);

OPT 3(12n + 10) � 0 (mod 12);

OPT 3(3n + 2) � 0 (mod 18);

OPT 3(6n + 5) � 0 (mod 36);

OPT 3(24n + 23) � 0 (mod 144):

For all i � 1 and n � 0, we have

OPT 3i (3n + 2) � 0 (mod 3i+1):
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Some further ‘results’ (DSSS)

Strong evidence suggests the following are also true:
▶ For all i ; j � 1 and k not a multiple of 2 or 3, we have

OPT 3i �2j �k(3n + 2) � 0 (mod 3i+1 � 2j+2):

▶ For all i ; j � 1 and k not a multiple of 2 or 3, we have

OPT 3i �2j �k(3n + 1) � 0 (mod 3i � 2j+1):

We have proofs for several cases, and a conjectured lemma which would
give the proof for all cases.
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Some general conjectures (DSSS)

For all n � 0, � � 0 and i ; k � 1, we have

OPT 2ik(2�(4n + 1)) � 0 (mod 23�+2i�3);

OPT 2ik(2�(4n + 2)) � 0 (mod 23�+2i );

OPT 2ik(2�(4n + 3)) � 0 (mod 23�+2i�1);

OPT 2ik(2�(8n + 4)) � 0 (mod 23�+2i+3);

OPT 2ik(2�(8n + 5)) � 0 (mod 23�+2i�2);

OPT 2ik(2�(8n + 6)) � 0 (mod 23�+2i+2);

OPT 2ik(2�(8n + 7)) � 0 (mod 23�+2i ):

This is stronger than the conjecture from SSS, and generalizes some
results of Adiga and Dasappa (for the case k = 1; i = 1) and DSSS (for
the case � = 1). Again, we have proofs for several cases of this.
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OPT 2ik(2�(8n + 6)) � 0 (mod 23�+2i+2);

OPT 2ik(2�(8n + 7)) � 0 (mod 23�+2i ):

This is stronger than the conjecture from SSS, and generalizes some
results of Adiga and Dasappa (for the case k = 1; i = 1) and DSSS (for
the case � = 1).

Again, we have proofs for several cases of this.
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Some general conjectures contd. (DSSS)

For all n � 0, � � 0 and k � 0, we have

OPT 2k+1(2�(8n + 1)) � 0 (mod 2);

OPT 2k+1(2�(8n + 2)) � 0 (mod 2);

OPT 2k+1(2�(8n + 3)) � 0 (mod 4);

OPT 2k+1(2�(8n + 4)) � 0 (mod 2);

OPT 2k+1(2�(8n + 5)) � 0 (mod 8);

OPT 2k+1(2�(8n + 6)) � 0 (mod 4);

OPT 2k+1(2�(8n + 7)) � 0 (mod 16):

This generalizes the results of SSS.
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Internal Congruences

We are also interested in internal congruences of the form

c(An + B) � c(A0n + B 0) (mod M);

and we expect that the above two quantities are not congruent to a fixed
number modulo M for all n, so as to make this relation more nontrivial.

In many cases, the sequence A0n + B 0 is rendered as a subsequence of
An + B, and such an internal congruence usually allows us to derive an
infinite family of congruences under the fixed modulus M.

Internal congruences modulo an arbitrary power of a number are not
known widely.
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What about internal congruences?

Some proofs of SSS unearthed the following: for all n � 1 and
i 2 f1; 2; 3g,

OPT 3(2in) � OPT 3(2i�1n) (mod 2i+1):

It looks likely that this is true for general i .

We also have: For all n � 1, we have

OPT 4(2n) = 2 � OPT 8(n):

This doesn’t seem to generalize as easily.
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Thank you for your attention!
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