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Tiling Problems

Combinatorialists study many different kinds of tiling problems. One of
the simplest, is to find the number of ways to tile a 2× n board with
dominoes.

Figure: Two types of Dominoes

Figure: A 2× n board



Tiling Problems

Figure: First choice of the right most corner placement

Figure: Second choice of the right most corner placement

So, these are just the Fibonacci numbers!

But not all tiling problems are easy!



Tiling a hexagon



Tiling a diamond

We will focus on these objects, in this talk.



Aztec Diamonds

I In 1991, Elkies, Kuperberg, Larsen and Propp introduced a new
class of object which they called Aztec Diamonds.

I The Aztec Diamond of order n (denoted by AD(n)) is the union of
all unit squares inside the contour |x |+ |y | = n + 1

Figure: AD(3), Aztec Diamond of order 3



Aztec Diamonds

I In 1991, Elkies, Kuperberg, Larsen and Propp introduced a new
class of object which they called Aztec Diamonds.

I The Aztec Diamond of order n (denoted by AD(n)) is the union of
all unit squares inside the contour |x |+ |y | = n + 1

Figure: A Mezoamerican pyramid



Aztec Diamond Theorem

I A domino is the union of any two unit squares sharing an edge, and
a domino tiling of a region is a covering of the region by dominoes
so that there are no gaps or overlaps.

I They considered the problem of counting the number of domino
tiling of the Aztec Diamond and presented four different proofs of
the following result.

Theorem (Elkies–Kuperberg–Larsen–Propp)
The number of domino tilings of an Aztec Diamond of order n is
2n(n+1)/2.

We will prove this result in this talk.



Aztec Rectangle

Figure: Checkerboard representation of an Aztec Rectangle



Aztec Rectangles

I We denote by ARa,b the Aztec rectangle which has a unit squares on
the southwestern side and b unit squares on the northwestern side.

I For a < b, ARa,b does not have any tiling by dominoes.

I The non-tileability of the region ARa,b becomes evident if we look
at the checkerboard representation of ARa,b



Aztec Rectangle Theorem

If we remove b − a unit squares from the southeastern side then we have
a simple product formula found by Mills, Robbins and Rumsey.

Theorem (Mills-Robbins-Rumsey)
Let a < b be positive integers and 1 ≤ s1 < s2 < · · · < sa ≤ b. Then the
number of domino tilings of ARa,b where all unit squares from the
south-eastern side are removed except for those in positions s1, s2, . . . , sa
is

2a(a+1)/2
∏

1≤i<j≤a

sj − si
j − i

.

But, how does one count such tilings?

We will show one technique in this talk.



Kuo’s Graphical Condensation

For a graph G , M(G ) denotes the number of perfect matchings of G .

Theorem (Eric Kuo)
Let G be a planar graph with four vertices w , x , y , z that appear in that
cyclic order on a face of G. Then

M(G ) M(G − {w , x , y , z}) + M(G − {w , y}) M(G − {x , z})

= M(G − {w , x}) M(G − {y , z}) + M(G − {w , z}) M(G − {x , y}).



Kuo’s Graphical Condensation

If G = (V1,V2,E ) is bipartite, and

I w , y ∈ V1, x , z ∈ V2, |V1| = |V2|; second term vanishes



Kuo’s Graphical Condensation

Theorem (Eric Kuo)
Let G be a planar graph with four vertices w , x , y , z that appear in that
cyclic order on a face of G. Then

M(G ) M(G − {w , x , y , z}) + M(G − {w , y}) M(G − {x , z})

= M(G − {w , x}) M(G − {y , z}) + M(G − {w , z}) M(G − {x , y}).



Kuo’s Graphical Condensation

If G = (V1,V2,E ) is bipartite, and

I w , y ∈ V1, x , z ∈ V2, |V1| = |V2|; second term vanishes

I w , x ∈ V1, y , z ∈ V2, |V1| = |V2|; third term vanishes



Kuo’s Graphical Condensation

Theorem (Eric Kuo)
Let G be a planar graph with four vertices w , x , y , z that appear in that
cyclic order on a face of G. Then

M(G ) M(G − {w , x , y , z}) + M(G − {w , y}) M(G − {x , z})

= M(G − {w , x}) M(G − {y , z}) + M(G − {w , z}) M(G − {x , y}).



Kuo’s Graphical Condensation

If G = (V1,V2,E ) is bipartite, and

I w , y ∈ V1, x , z ∈ V2, |V1| = |V2|; second term vanishes

I w , x ∈ V1, y , z ∈ V2, |V1| = |V2|; third term vanishes

I w , x , y , z ∈ V1, |V1| = |V2|+ 2; first term vanishes



Kuo’s Graphical Condensation

Theorem (Eric Kuo)
Let G be a planar graph with four vertices w , x , y , z that appear in that
cyclic order on a face of G. Then

M(G ) M(G − {w , x , y , z}) + M(G − {w , y}) M(G − {x , z})

= M(G − {w , x}) M(G − {y , z}) + M(G − {w , z}) M(G − {x , y}).



Sketch Proof

I Superimpose a perfect matching of G (blue) and a perfect matching
of G − {w , x , y , z} (red) on the same copy of G

I There is a blue-red alternating path from w to one of x , y , z

I Two such paths cannot cross, so w does not connect to y

I Switch the edges in the path of w and get a pair of matchings of
G − {w , x} and G − {y , z} or of G − {w , z} and G − {x , y}



Pfaffians

Let A = (ai,j) be a 2n× 2n antisymmetric matrix and Γn be the set of all
perfect matchings of K2n.Then

Pf(A) =
∑

π={(i1,j1),...,(in,jn)}∈Γn

sgnπ
n∏

k=1

aik ,jk

where sgnπ = sgn i1j1i2j2 . . . injn.

I There are many ways to write π, so to see that Pf(A) is well-defined
we can assume that ik < jk and i1 < i2 < . . . < in.

I Pfaffians have many interesting properties, such as

Pf(A)2 = det(A).



An Example

Let n = 2, then

Pf(A) =
∑

π={(i1,j1),(i2,j2)}∈Γ2

sgnπ
2∏

k=1

aik ,jk

Pf(A) = a1,2a3,4 − a1,3a2,4 + a1,4a2,3.



Some notations

I We consider the symmetric difference on the vertices and edges of a
graph.

I Let H be a planar graph and G be an induced subgraph of H and let
W ⊆ V(H).

I Then we define G + W as follows: G + W is the induced subgraph
of H with vertex set V(G + W ) = V(G )∆ V(W ), where ∆ denotes
the symmetric difference of sets.



Our generalization of Kuo’s result

Theorem
Let H be a planar graph and let G be an induced subgraph of H with the
vertices a1, a2, . . . , a2k appearing in that cyclic order on a face of H.
Consider the skew-symmetric matrix A = (aij)1≤i,j≤2k with entries given
by

aij := M(G + {ai , aj}), if i < j . (1.1)

Then we have that

M(G + {a1, a2, . . . , a2k}) =
Pf(A)

[M(G )]k−1
. (1.2)



Idea of the proof

The main ingredients are induction and the following Proposition.

Proposition
Let H be a planar graph and G be an induced subgraph of H with the
vertices a1, . . . , a2k appearing in that cyclic order among the vertices of
some face of H. Then

M(G ) M(G + {a1, . . . , a2k}) +
k∑

l=2

M(G + {a1, a2l−1}) M(G + {a1, a2l−1})

=
k∑

l=1

M(G + {a1, a2l}) M(G + {a1, a2l}),

where {ai , aj} stands for the complement of {ai , aj} in the set
{a1, . . . , a2k}.



Back to the beginning

Let’s go back to the beginning of the talk.

We are interested in counting the number of domino tilings of these
regions.



Proof of Aztec Diamond Theorem

We give a short pictorial proof of the fact that number of domino tilings
of an Aztec Diamond of order n is 2n(n+1)/2.

For that, we recast the tiling problem as a graphical enumeration
problem.

It is well known (?) that domino tilings of an Aztec Diamond are in
bijection with perfect matchings of the so called dual graph of an Aztec
Diamond.

Perfect matchings of a graph are subgraphs where each vertex of the
original graph is of degree one.
What is the dual graph?



Dual Graphs

Figure: Aztec Diamond of order 3 and it’s dual graph

So, we can use the terms matchings and tilings equivalently.



Example

Figure: Equivalence of tilings and matchings



Proof of Aztec Diamond Theorem



Proof of Aztec Diamond Theorem



Proof of Aztec Diamond Theorem



Proof of Aztec Diamond Theorem



Proof of Aztec Diamond Theorem



Extensions?

What about other type of regions?

Or, regions with some holes (defects) on them?



Aztec Diamond with defects on adjacent sides

i

j

Figure: Aztec Diamond with defects on adjacent sides



Aztec Diamond with defects on adjacent sides

Proposition
Let a, i , j be positive integers such that 1 ≤ i , j ≤ a, then the number of
domino tilings of AD(a) with one defect on the southeastern side at the
i-th position counted from the south corner and one defect on the
northeastern side on the j-th position counted from the north corner is
given by

2a(a−1)/2

(
a− 1

i − 1

)(
a− 1

j − 1

)
3F2

[
1, 1− i , 1− j

1− a, 1− a
; 2

]
.

Here

rFs

[
a1, a2, . . . , ar
b1, . . . , bs

; z

]
=
∑
k≥0

(a1)k(a2)k · · · (ar )k
(b1)k(b2)k · · · (bs)k

zk

k!

and
(p)n = p(p + 1)(p + 2) · · · (p + n − 1).



Proof

We use Kuo condensation, with the vertices marked as follows.

y

z

w

x

Figure: Aztec Diamond with some marked squares; here a = 6



Forced dominoes for different choices of labels

y

z

x

w

y

w

z

x

y

x

Figure: Forced dominoes, where the vertices we remove are marked



Proof contd.

M(ADa(i , j)) M(AD(a− 1)) = M(AD(a)) M(ADa−1(i − 1, j − 1)) (1.3)

+ M(ARa−1,a(j)) M(ARa−1,a(i)).

M(ADa(i , j)) = 2a M(ADa−1(i − 1, j − 1)) + 2a(a−1)/2

(
a− 1

j − 1

)(
a− 1

i − 1

)
(1.4)

Now, we use induction to get the result.



More holes?

But, what about arbitrary holes?

On the boundary?



Regions with defects

k − 1

i

Figure: An a× b Aztec rectangle with defects marked in black; here
a = 4, b = 9.k = 5, i = 5



Regions with defects

Proposition
Let 1 ≤ a, i ≤ b be positive integers with k = b− a > 0, then the number
of domino tilings of ARa,b(2, 3, . . . , k) with a defect on the northwestern
side in the i-th position counted from the west corner is given by

2a(a+1)/2

(
a + k − 2

k − 1

)(
a

a− i + k

)
3F2

[
1,−k − 1, i − a− k

i − k + 1, 2− a− k
;−1

]
.



Preliminaries

We define the region ARk
a,b to be the region obtained from ARa.b by

adding a string of k unit squares along the boundary of the southeastern
side (γ defects) as shown in the figure below.

b

a
k

Figure: ARk
a,b with a = 4, b = 8, k = 4



General Result

Theorem
Assume that one of the two shorter sides does not have any defects on it.
We assume this to be the southwestern side. Let δ1, . . . , δ2n+2k be the
elements of the set {β1, . . . , βn+k} ∪ {α1, . . . , αn} ∪ {γ1, . . . , γk} listed in
a cyclic order, where βi ’s are defects on the shorter side, and αi ’s are
defects on the longer sides.
Then we have

M(ARa,b \ {β1, . . . , βn+k , α1, . . . , αn}) =

1

[M(ARk
a,b)]n−k+1

Pf[(M(ARk
a,b \ {δi , δj}))1≤i<j≤2n+2k ],

where all the terms on the right hand side are given by explicit formulas.



General Case

Theorem
Let β1, . . . , βn+k be arbitrary defects of type β and α1, . . . , αn be
arbitrary defects of type α along the boundary of ARa,b. Then
M(ARa,b \ {β1, . . . , βn+k , α1, . . . , αn}) is equal to the Pfaffian of a
2n × 2n matrix whose entries are Pfaffians of (2k + 2)× (2k + 2)
matrices of the type in the statement of main theorem.



Aztec Rectangles with defects contd.

Figure: Tiling with arbitrary defects



Other type of tilings

If instead of dominoes, we had trominoes?

Figure: L-trominoes

The problem becomes quite difficult, and is not solvable using the
techniques shown today.



Tromino Cover

However, such tilings (called covers in this case) exists.

Theorem
ARa,b has a cover if and only if a(b + 1) + b(a + 1) ≡ 0 (mod 3).

Theorem
A tromino cover for ARk

a,b can be found in time O(b2).



Covers with Defects

With defects the problem becomes even harder.

Figure: AR4,7 with defect



Covers with Defects

Figure: Covered AR4,7 with defect



Other defects

Figure: AR4,7 with defects



Other defects

Figure: Covered AR4,7 with defects

Theorem
It is NP-complete to decide if a cover exists for ARk

a,b with fixed number
of defects.



Thank you for your attention.
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