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Introduction | Examples

We start with certain examples of certain examples of series having closed
forms. Denote the rising factorial as (a)k , such that .

∞∑
k=0

(4k + 1)

(
− 1

2

k

)5

=
2

Γ( 3
4
)4

;
∞∑
k=0

(6k + 1)

(
− 1

3

k

)3

=
3

Γ( 1
3
)Γ( 2

3
)

Using
(
z
k

)
= (−1)k (−z)k

(1)k
, where (a)k := a(a + 1) · · · (a + k − 1) denotes the

rising factorial, we have
( 1

2
)k

k!
= (−1)k

(− 1
2

k

)
. The above series can be rewritten

as

In terms of rising factorial

∞∑
k=0

(
5
4

)
k

(
1
2

)5

k(
1
4

)
k

(1)5
k

=
2

Γ( 3
4
)4

;
∞∑
k=0

(
7
6

)
k

(
1
3

)3

k(
1
6

)
k

(1)3
k

=
2

Γ( 3
4
)4

This type of series are examples of hypergeometric series. We give a formal
definition of this series.
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Hypergeometric series

For a complex number a and a non-negative integer n, let (a)n denote the
rising factorial defined by

(a)0 := 1 and (a)k := a(a + 1) · · · (a + k − 1) for k ≥ 1.

Thus, for complex numbers ai , bj and λ, with none of the bj being negative
integers or zero, the classical hypergeometric series r+1Fr is defined as

r+1Fr

[
a0, a1, · · · , ar

b1, · · · , br
λ

]
:=

∞∑
k=0

(a0)k · · · (ar )k
(b1)k · · · (br )k

λk

k!
.

Similarly, the truncated hypergeometric series is given by

r+1Fr

[
a0, a1, · · · , ar

b1, · · · , br
λ

]
n

:=
n∑

k=0

(a0)k · · · (ar )k
(b1)k · · · (br )k

λk

k!
.

For a detailed study of this series, see the book Special functions by G.
Andrews, R. Askey, and R. Roy and Generalized hypergeometric series by W.
Bailey.
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Basic Recap — Characters

Characters are homomorphisms from a group to the group of complex numbers.

In a finite field Fq there are two finite abelian groups that are of significance–
the additive group and the multiplicative group.

Additive characters

Characters of the additive group (Fpn ,+).

Multiplicative characters

Characters of the multiplicative group (F∗pn ,×), consisting of all non-zero
elements.

For the analogues of the hypergeometric series over finite fields we shall mostly
refer to multiplicative characters.
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Notations

• Capital letters A,B,C , · · · and Greek letters χ, ψ, · · · will denote
multipicative characters.

• Trivial character and quadratic characters are denoted by ε and φ
respectively.

• Extend the multiplicative character to all of Fq by setting χ(0) = 0.

• χ is the inverse of χ, i.e., χχ = ε,
∑
χ

denotes the summation over all

multiplicative characters of Fq.

• δ(A) =

{
1 if A = ε
0 otherwise.

• q = pn, where p is a prime.
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Elementary definitions

Before moving to the formal definition of hypergeometric series over finite
fields, we recall elementary definitions of Gauss sums and Jacobi sums.

Trace

Tr(α) := α + αq + · · ·+ αqm−1

Gauss Sum

Set ζ = e2πi/p, Gauss sum is defined as

G(χ) =
∑
t∈Fq

χ(t)ζTr(t)

Jacobi Sum

Set ζ = e2πi/p, Jacobi sum is defined as

J(A,B) =
∑
t∈Fq

A(t)B(1− t).
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Finite field analogues

We start with certain examples.

Example 1

The Gauss sum G(χ) =
∑

t∈Fq χ(t)ζTr(t) is the analogue of the gamma

function

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Example 2

The Jacobi sum J(A,B) =
∑

t∈Fq A(t)B(1− t) is the analogue of the beta

function

B(x , y) =

∫ ∞
0

tx−1(1− t)y−1dt.

This type of analogy, essentially expressed as xk ↔ χ(x) dates back to Jacobi.
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Finite field analogues

Following this analogy, Helversen-Pasotto gave the following result.

1

q − 1

∑
χ

G(Aχ)G(Bχ)G(Cχ)G(Dχ)

=
G(AB)G(AD)G(BC)G(CD)

G(ABCD)
+ q(q − 1)AC(−1)δ(ABCD)

which is a finite field analogue of Barnes’ lemma,

Barnes’ Lemma

1

2πi

∫ i∞

−i∞
Γ(a + z)Γ(b − z)Γ(c + z)Γ(d − z)dz

=
Γ(a + b)Γ(a + d)Γ(b + c)Γ(c + d)

Γ(a + b + c + d)

Using similar type of analogue, John Greene [Trans. Amer. Math. Soc. (1987)]
developed a finite field analogue for the hypergeometric series.
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Observation

We shall discuss the hypergeometric series over finite field as defined by John
Greene [(1987)] which is based on the following observation. This expression
represents a finite field analogue for the power series expansion of a function.

Observation

Any function f : Fq → C has a unique representation

f (x) = fδδ(x) +
∑
χ

fχχ(x),

where the sum ranges over all multiplicative characters of Fq and δ is given by

δ(x) =

{
1 if x = 0
0 otherwise.

Also, fδ and fχ are given by

fδ = f (0), fχ =
1

q − 1

∑
x∈Fq

f (x)χ(x).
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Binomial theorem and the finite field analogue

Binomial coefficients and the binomial theorem

The binomial theorem states

(1 + x)a =
∞∑
k=0

(
a

k

)
xk ,

where
(
a
k

)
is the binomial co-efficient defined as

(
a
k

)
= a(a−1)···(a−k+1)

k!
.

The observation discussed previously gives the character sum analogue for the
binomial theorem as follows.

Theorem

For any character A ∈ F̂q and x ∈ Fq,

A(1 + x) = δ(x) +
1

q − 1

∑
χ

J(A, χ)χ(−x).
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Binomial coefficients and the finite field analogue

It follows from the previous theorem that the finite field analogue for the
binomial coefficients is the Jacobi sum. Thus Greene defined the binomial
coefficient over finite fields as follows.

Definition

For characters A and B of Fq, define(
A

B

)
=

B(−1)

q
J(A,B).

In terms of binomial coefficients over finite fields, the binomial theorem over
finite field can therefore rewritten as

A(1 + x) = δ(x) +
q

q − 1

∑
χ

(
A

χ

)
χ(x).
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Properties of binomial coefficients

From the properties of Jacobi sums, certain properties of the binomial
coefficients follows easily.

(
A

B

)
=

(
A

AB

)
(
A

B

)
=

(
BA

B

)
B(−1)(

A

B

)
=

(
B

A

)
AB(−1)(

A

A

)
= − 1

q
+

q − 1

q
δ(A)(

ε

A

)
= −A(−1)

q
+

q − 1

q
δ(A)

We now express the hypergeometric series in terms of binomial coefficients over
finite fields.

Arjun Singh Chetry HYPERGEOMETRIC SERIES OVER FINITE FIELDS



Finite field analogue for the hypergeometric series

Recall that the hypergeometric series is defined by

2F1

(
a, b

c
x

)
:=

∞∑
k=0

(a)k(b)k
k!(c)k

xk ,

where (a)k = a(a + 1) · · · (a + k − 1) = (a+k−1)!
(a−1)!

= Γ(a+k)
Γ(a)

. The hypergeometric
series can thereby written in the form of Gamma function as

2F1

(
a, b

c
x

)
=

(c − 1)!

(a− 1)!(b − 1)!

∞∑
k=0

(a + k − 1)!(b + k − 1)!

k!(c + k − 1)!
xk

=
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a + k)Γ(b + k)

Γ(k − 1)Γ(c + k)
.

Since the analogue of the Gamma function is the Gauss sum, the natural
approach to define a character sum analogue would be

G(C)

G(A)G(B)

∑
χ

G(Aχ)G(Bχ)

G(χ)G(Cχ)
χ(x).
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But the character sum analogue in terms of Gauss sums leads to poor results
and hence as an alternative Greene developed an analogue using the integral
representation for the hypergeometric series.

Integral formula for the hypergeometric series

2F 1

(
a, b

c
| x
)

=
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

tb(1− t)c−b(1− tx)−a dt

t(1− t)
.

Greene defined the finite field analogue as follows.

Definition

For characters A,B and C of Fq, and x ∈ Fq,

2F 1

(
A, B

C
| x
)

:= ε(x)
BC(−1)

q

∑
y

B(y)BC(1− y)A(1− xy).
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Using this definition and the binomial theorem over finite fields, the
hypergeometric series can be easily expressed in terms of binomial coefficients
as

Theorem

For characters A,B and C of Fq, and x ∈ Fq,

2F1

(
A, B

C
| x
)

:=
q

q − 1

∑
χ

(
Aχ

χ

)(
Bχ

Cχ

)
χ(x).

Notice that the classical hypergeometric series also can be expressed in terms
of binomial coefficients as

2F1

(
a, b

c
x

)
= C

∞∑
k=0

(
a + k − 1

k

)(
b + k − 1

c + k − 1

)
xk ,

where C = {
(
b−1
c−1

)
}−1
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Generalized hypergeometric series and its finite field analogue

Similarly, in general, observe that

n+1Fn

(
a0, a2, · · · , an

b1, · · · , bn
x

)
:= C

∞∑
k=0

(
a0 + k − 1

k

)(
a1 + k − 1

b1 + k − 1

)
· · ·

(
an + k − 1

bn + k − 1

)
xk ,

where C = {
(
a1−1
b1−1

)
· · ·
(
an−1
bn−1

)
}−1. The observation above led directly to the

following definition.

Definition

For characters A0,A1, . . . ,An and B1,B2, . . . ,Bn of Fq and x ∈ Fq,

n+1Fn

(
A0, A1, · · · , An

B1, · · · , Bn
| x
)

:=
q

q − 1

∑
χ

(A0χ

χ

)(A1χ

B1χ

)
· · ·
(Bnχ

Bnχ

)
χ(x).
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Integral representation and its finite field analogue

Generalized hypergeometric series have the following inductive integral
representation.

n+1Fn

(
a0, a1, · · · , an

b1, · · · , bn
| x
)

=
Γ(bn)

Γ(an)Γ(bn − an)

∫ 1

0
nFn−1

(
a0, a1, · · · , an−1

b1, · · · , bn−1
| tx
)

· tan (1− t)bn−an dt

t(1− t)

A finite field analogue for this result holds as follows:

Theorem

For characters A0,A1, . . . ,An and B1,B2, . . . ,Bn of Fq and x ∈ Fq,

n+1Fn

(
A0, A1, · · · , An

B1, · · · , Bn
| x
)

=
AnBn(−1)

q

∑
y

nFn−1

(
A0, A1, · · · , An−1

B1, · · · , Bn−1
| tx
)

· An(y)AnBn(1− y).
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From the definition of classical hypergeometric series, it is clear that if a
numerator and a denominator parameter are equal, then the order of the series
reduces by 1. Similar type of result is also expected in the finite field case.
Also, if one of the numerator parameter is the trivial character ε, the series
reduces to one lower order. We follow these notations.

Notations

For characters A1,A2, · · · ,An,B1,B2, · · · ,Bn, let(−→
A−→
B

)
:=

n∏
k=1

(
Ak

Bk

)
,

and

F

(
C ,

−→
A
−→
B

x

)
:= n+1Fn

(
C , A1, · · · , An

B1, · · · , Bn
| x
)
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Clearly, by the definition of classical hypergeometric series the order of the
binomial coefficients is irrelevant, there are five cases to consider.

Case I

n+2Fn+1

(
ε, A,

−→
B

C ,
−→
D

x

)
=− 1

q
C(x)n+1Fn

(
AC ,

−→
B C
−→
DC

x

)

+ ε(x)

(
A

C

)(−→
B−→
D

)
.
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Case II

n+3Fn+2

(
A ε, B,

−→
C

D, E ,
−→
F

x

)

= A(−1)D(x)

(
D

A

)
n+2Fn+1

(
AD, BD,

−→
C D

ED,
−→
DC

x

)

− 1

q
D(−1)ε(x)

(
B

E

)(−→
C−→
F

)

+
q − 1

q2
D(−1)E(x)n+1Fn

(
BE ,

−→
C E
−→
F E

x

)
δ(AD).
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Case III

n+2Fn+1

(
A, B,

−→
C

B,
−→
D

x

)
=− 1

q
n+1Fn

(
A,

−→
C
−→
D

x

)

+ B(x)

(
AB

B

)(−→
C B−→
DB

)
.
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Case IV

n+3Fn+2

(
A B, C ,

−→
D

A, E ,
−→
F

x

)
=
(B
A

)
n+2Fn+1

(
B, C ,

−→
D

E ,
−→
F

x

)

−
1

q
A(−x)

(CA

EA

)(−→DA
−→
F A

)
+

q − 1

q2
A(−1)E(x)n+1Fn

(
CE ,

−→
DE
−→
F E

x

)
δ(B).
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Case V

n+3Fn+2

(
A B, C ,

−→
D

E , B,
−→
F

x

)
=
(CE

BE

)
n+2Fn+1

(
A, C ,

−→
D

E ,
−→
F

x

)

−
1

q
BE(−1)B(x)

(AB
B

)(−→DB
−→
F B

)
+

q − 1

q2
BE(−1)n+1Fn

(
A,

−→
D
−→
F

x

)
δ(CE).
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Transformation formulas over finite fields

The classical hypergeometric series satisfies several transformation formulas.
We shall discuss analogues over finite fields of certain transformation formulas
due to Greene.

Finite field analogue of the Gauss Theorem

2F1

(
a, b

c
1

)
=

Γ(c)Γ(c − a− b)

Γ(c − a)Γ(c − b)
(Gauss Theorem)

2F1

(
A, B

C
1

)
=A(−1)

(
B

AC

)
.
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Pfaff’s transformation and the finite field analogue

2F1

(
a, b

c
x

)
=(1− x)−a

2 F1

(
a, c − b

c
x

x − 1

)
(Pfaff’s Transformation)

2F1

(
A, B

C
x

)
=C(−1)A(1− x)2F1

(
A, CB

C

x

x − 1

)
+ A(−1)

(
B

AC

)
δ(1− x).
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Euler’s transformation and the finite field analogue

2F1

(
a, b

c
x

)
=(1− x)c−a−b

2F1

(
c − a, c − b

c
x

)
(Euler’s Transformation)

2F1

(
A, B

C
x

)
=C(−1)CAB(1− x)2F1

(
CA, CB

C
x

)
+ A(−1)

(
B

AC

)
δ(1− x).

This are rather simpler transformations. Certain complicated transformation
formulas also exists.
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Other Transformations

2F1

(
a, b

1− a + b
x

)
= (1− x)−b

2 F1

(
1
2
b, 1

2
+ 1

2
b

1− a + b
4x

(1 + x)2

)

Finite field analogue

2F1

(
A, B

AB
x

)
= δ(1 + x)

{
0 if B is not a square(
C
A

)(
φC
A

)
otherwise

+
A(−1)

q
B

(
1 + x

x

)
+ B(1 + x)

q

q − 1

∑
χ

(
Bχ2

χ

)(
Bχ

ABχ

)
χ

(
x

(1 + x)2

)
.

Clearly, the major term on the RHS does not represent a hypergeometric series.
Greene solved this problem by imposing the condition that B is a square.
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The analogy is therefore improved as

Finite field analogue

2F1

(
A, B2

AB2 x

)
= δ(1 + x)

[(
B

A

)
+

(
φB

A

)]

+ A(−1)
q − 1

q
ε(x)ε(1 + x)δ(φB)

+
q − 1

q2

(
φ

φB

)−1

A(−1)B2

(
2

1− x

)
ε(x)ε(1 + x)δ(AB)

+

(
B

A

)(
φ

φB

)−1

A(−1)B2

(
2

1− x

)
2F1

(
φB, B

AB2

4x

(1 + x)2

)
.
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Further Readings

Transformation for higher order hypergeometric series also exists. Interested
readers can go through the paper by John Greene, Hypergeometric functions
over finite fields, Trans. Amer. Math. Soc. 301 (1987), no. 1, 77-101.
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Another version of the hypergeometric series

The hypergeometric series over finite field(by J. Greene) is essentially defined in
terms of binomial coefficients(which is related to the Jacobi sum, by
definition). Dermot McCarthy [(2012)] gave another version of finite field
analogue for the hypergeometric series purely in terms of Gauss sums.

McCarthy’s version

For characters A0,A1, . . . ,An and B1,B2, . . . ,Bn of Fq and x ∈ Fq,

n+1Fn

(
A0, A1, · · · , An

B1, · · · , Bn
| x
)

:=
1

q − 1

∑
χ

n∏
i=0

G(Aiχ)

G(Ai )

n∏
j=1

G(Bjχ)

G(Bj )
G(χ)χ(−1)n+1χ(x).

Interested persons can go through the paper by Dermot McCarthy,
Transformations of well-poised hypergeometric functions over finite fields,
Finite Fields Appl. 18(6) (2012), 1133-1147.
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Thank You
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