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Introduction : Unique factorization and beyond

• The ring Z is a principal ideal domain (PID) and hence a unique factorization
domain (UFD).

• The ring Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z} is not a UFD.

• For an algebraic number field K , its ring of integers OK is not always a PID.

• How do we “measure” the failure of unique factorization in the ring OK?
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Ideal class group and class number

• Let F(K) denote the group of fractional ideals of K .

• Let P(K) denote the subgroup of F(K) consisting of the principal fractional
ideals of K .

• The quotient group ClK := F(K)/P(K) is called the ideal class group of K .

• The group ClK is a finite abelian group for all number fields K .

• The order of the group ClK is called the class number of K and is denoted by
hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Ideal class group and class number

• Let F(K) denote the group of fractional ideals of K .

• Let P(K) denote the subgroup of F(K) consisting of the principal fractional
ideals of K .

• The quotient group ClK := F(K)/P(K) is called the ideal class group of K .

• The group ClK is a finite abelian group for all number fields K .

• The order of the group ClK is called the class number of K and is denoted by
hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Ideal class group and class number

• Let F(K) denote the group of fractional ideals of K .

• Let P(K) denote the subgroup of F(K) consisting of the principal fractional
ideals of K .

• The quotient group ClK := F(K)/P(K) is called the ideal class group of K .

• The group ClK is a finite abelian group for all number fields K .

• The order of the group ClK is called the class number of K and is denoted by
hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Ideal class group and class number

• Let F(K) denote the group of fractional ideals of K .

• Let P(K) denote the subgroup of F(K) consisting of the principal fractional
ideals of K .

• The quotient group ClK := F(K)/P(K) is called the ideal class group of K .

• The group ClK is a finite abelian group for all number fields K .

• The order of the group ClK is called the class number of K and is denoted by
hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Ideal class group and class number

• Let F(K) denote the group of fractional ideals of K .

• Let P(K) denote the subgroup of F(K) consisting of the principal fractional
ideals of K .

• The quotient group ClK := F(K)/P(K) is called the ideal class group of K .

• The group ClK is a finite abelian group for all number fields K .

• The order of the group ClK is called the class number of K and is denoted by
hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Example:- Diophantine equation

• Question: Find all (x , y) ∈ Z2 such that

y 2 = x3 − 2.

• Observe that both x and y are odd integers.

• Write x3 = (y −
√
−2)(y +

√
−2) in Z[

√
−2].

• We have y +
√
−2 = (a + b

√
−2)3 (Because Z[

√
−2] is a PID).

• Equating the coefficients of
√
−2 from both sides, we get 1 = b(3a2 − 2b2).

• This yields the solution (a, b) = (±1, 1).

• Hence (x , y) = (3,±5).
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Classification of certain primes

• Question: Find all primes p such that p = x2 + y 2 for some x , y ∈ Z.

• From Class Field Theory, it is equivalent to the fact that p splits completely
in the Hilbert class field of Q(

√
−1).

• Since the class number of Q(
√
−1) is 1, the Hilbert class field of Q(

√
−1) is

itself.

• Now, p splits completely in Q(
√
−1) if and only if

(
−1
p

)
= 1.

• Consequently, p = x2 + y 2 has solutions ⇐⇒ p ≡ 1 (mod 4).
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Motivation and history (qualitative results)

Theorem (Heegner, Baker and Stark)

Let d > 0 be a square-free integer. Then the quadratic field Q(
√
−d) has class

number 1 precisely for d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

Gauss class number 1 conjecture

There exist infinitely many real quadratic fields of class number 1.

Theorem (Nagell (1922), Ankeny and Chowla (1955))

Let n ≥ 2 be an integer. Then there exist infinitely many imaginary quadratic
fields K such that n | hK .

Theorem (Weinberger (1973))

Let n ≥ 2 be an integer. Then there exist infinitely many real quadratic fields
K such that n | hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Motivation and history (qualitative results)

Theorem (Heegner, Baker and Stark)

Let d > 0 be a square-free integer. Then the quadratic field Q(
√
−d) has class

number 1 precisely for d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

Gauss class number 1 conjecture

There exist infinitely many real quadratic fields of class number 1.

Theorem (Nagell (1922), Ankeny and Chowla (1955))

Let n ≥ 2 be an integer. Then there exist infinitely many imaginary quadratic
fields K such that n | hK .

Theorem (Weinberger (1973))

Let n ≥ 2 be an integer. Then there exist infinitely many real quadratic fields
K such that n | hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Motivation and history (qualitative results)

Theorem (Heegner, Baker and Stark)

Let d > 0 be a square-free integer. Then the quadratic field Q(
√
−d) has class

number 1 precisely for d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

Gauss class number 1 conjecture

There exist infinitely many real quadratic fields of class number 1.

Theorem (Nagell (1922), Ankeny and Chowla (1955))

Let n ≥ 2 be an integer. Then there exist infinitely many imaginary quadratic
fields K such that n | hK .

Theorem (Weinberger (1973))

Let n ≥ 2 be an integer. Then there exist infinitely many real quadratic fields
K such that n | hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Motivation and history (qualitative results)

Theorem (Heegner, Baker and Stark)

Let d > 0 be a square-free integer. Then the quadratic field Q(
√
−d) has class

number 1 precisely for d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

Gauss class number 1 conjecture

There exist infinitely many real quadratic fields of class number 1.

Theorem (Nagell (1922), Ankeny and Chowla (1955))

Let n ≥ 2 be an integer. Then there exist infinitely many imaginary quadratic
fields K such that n | hK .

Theorem (Weinberger (1973))

Let n ≥ 2 be an integer. Then there exist infinitely many real quadratic fields
K such that n | hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Motivation and history (qualitative results)

Theorem (Heegner, Baker and Stark)

Let d > 0 be a square-free integer. Then the quadratic field Q(
√
−d) has class

number 1 precisely for d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

Gauss class number 1 conjecture

There exist infinitely many real quadratic fields of class number 1.

Theorem (Nagell (1922), Ankeny and Chowla (1955))

Let n ≥ 2 be an integer. Then there exist infinitely many imaginary quadratic
fields K such that n | hK .

Theorem (Weinberger (1973))

Let n ≥ 2 be an integer. Then there exist infinitely many real quadratic fields
K such that n | hK .

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Simultaneous divisibility by 3 (Quadratic field case)

• Question:- What can we say about the divisibility of class numbers of two
fields taken at a time?

Scholz’s reflection principle (1932)

Let d > 1 be a square-free integer. Let r and s be the 3-ranks of the ideal class
groups of Q(

√
d) and Q(

√
−3d), respectively. Then

r ≤ s ≤ r + 1.

• In particular, if 3 | hQ(
√
d), then 3 | hQ(

√
−3d).

• Combining Weinberger’s theorem and Scholz’s reflection principle, we obtain

Proposition

There exist infinitely many pairs of quadratic fields Q(
√
d) and Q(

√
−3d), with

d > 0, such that

3 | hQ(
√
d) and 3 | hQ(

√
−3d).
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Recent results

Theorem (Komatsu (2002))

Let m be a non-zero integer. Then there exist infinitely many distinct pairs of
quadratic fields Q(

√
d) and Q(

√
md), with d > 0, such that 3 | hQ(

√
d) and

3 | hQ(
√
md).

Theorem (Komatsu (2017))

Let m ≥ 2 and n ≥ 2 be integers. Then there exist infinitely many pairs of
imaginary quadratic fields Q(

√
d) and Q(

√
md) such that n | hQ(

√
d) and

n | hQ(
√
md).
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Recent results

• Iizuka considered a slight variant of the above theorems and proved the
following theorem.

Theorem (Iizuka (2018))

There exist infinitely many pairs of imaginary quadratic fields Q(
√
d) and

Q(
√
d + 1) with d ∈ Z such that 3 | hQ(

√
d) and 3 | hQ(

√
d+1).

• Iizuka also made the following conjecture.

Conjecture (Iizuka (2018))

Let m ≥ 1 be an integer and let ` ≥ 3 be a prime number. Then there exist
infinitely many tuples {Q(

√
d),Q(

√
d + 1), . . . ,Q(

√
d + m)} of quadratic

fields (real or imaginary), with d ∈ Z, such that ` divides the class numbers of
all them.
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Statement of Theorem 1

• We address a weaker version of the aforementioned conjecture and prove the
following theorem.

Theorem 1 (with M. Subramani)

Let k ≥ 1 be a cube-free integer such that k ≡ 1 (mod 9) and
gcd(k, 7 · 571) = 1. Then there exist infinitely many triples of imaginary
quadratic fields Q(

√
d), Q(

√
d + 1) and Q(

√
d + k2) with d ∈ Z such that 3

divides hQ(
√
d), hQ(

√
d+1) and h

Q(
√

d+k2)
.
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Sketch of the proof

• We proved two parametric families of quadratic fields with class number
divisible by 3.

Proposition 1

Let t be an integer with t 6≡ 0 (mod 3). Then the class number of the
quadratic field Q(

√
3t(3888t2 + 108t + 1)) is divisible by 3.

Proposition 2

Let m ≥ 1 be an integer. Then the class number of the imaginary quadratic
field Q(

√
1− 2916m3) is divisible by 3.
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Sketch of the proof of Theorem 1

Theorem (Llorente and Nart)

Let f (T ) = T 3 −mT − n ∈ Z[T ] be an irreducible polynomial over Q with
discriminant D(f ) and splitting field Kf over Q. Assume that for each prime
number p, either vp(m) < 2 or vp(n) < 3 holds. Let kf = Q(

√
D(f )) and let `

be a prime number.

(i) If ` 6= 3, then Kf /kf is ramified at a prime ideal ℘ above ` if and only if
1 ≤ v`(n) ≤ v`(m).

(ii) For ` = 3, the extension Kf /kf is ramified at a prime ideal ℘ above 3 if
and only if one of the following three conditions holds.

1 1 ≤ v3(n) ≤ v3(m),
2 3 - n, m ≡ 0, 6 (mod 9) and n2 6≡ m + 1 (mod 9),
3 3 - n, m ≡ 3 (mod 9) and n2 6≡ m + 1 (mod 27).
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Sketch of the proof of Theorem 1

• For an integer t ≥ 1, consider ft(X ) = X 3 − 27tX − k ∈ Z[X ].

• Let t0 ∈ Z be such that ft is irreducible for all integer t > |t0|.

• Consider the discriminant D(ft) = 27 · (2916t3 − k2).

• Let t′0 ∈ Z be such that D(ft) is not a perfect square for all integers t > |t′0|.

• We set T = max{|t0|, |t′0|}+ 1.

• Consider the following simultaneous congruences.{
x ≡ 2 (mod 9);
x ≡ 1 (mod k).

(1)

• Since gcd(k, 9) = 1, by the Chinese remainder theorem, there exists a unique
solution x0 (mod 9k) to the system of congruences (1).

• Let
N = {n ∈ Z : n ≡ x0 (mod 9k) and n > max{T , k}}.
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Sketch of the proof of Main Theorem

• For n ∈ N , we have

27 · n · (3888n2 + 108n + 1) ≡ 33 · 7 · 571 6≡ 0 (mod k). (2)

• Now, for n ∈ N , let tn = n · (3888n2 + 108n + 1) and we consider the
polynomial ftn (X ) = X 3 − 27tnX − k over Q.

• Since n ∈ N , we have ftn is irreducible over Q and D(ftn ) is not a perfect
square.

• By a result of Llorente and Nart, the splitting field E of ftn is an unramified
extension of Q(

√
D(ftn )) and hence 3 | hQ(

√
D(ftn ))

.
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Sketch of the proof of Theorem 1

• Since Q(
√

D(ftn )) = Q(
√

27 · (2916t3n − k2)) = Q(
√

3 · (2916t3n − k2)) is a
real quadratic field with 3 | hQ(

√
D(ftn ))

,

• Scholz’s reflection principle yields that 3 divides the class number of the
imaginary quadratic field Q(

√
−3 · 3 · (2916t3n − k2)) = Q(

√
k2 − 2916t3n).

• By Proposition 1 and Proposition 2, we already have that 3 divides the class
numbers of both Q(

√
−2916t3n) = Q(

√
−tn) and Q(

√
1− 2916t3n).

• By letting Dn = −2916t3n , we get

3 | hQ(
√
Dn)
, 3 | hQ(

√
Dn+1) and 3 | h

Q(
√

Dn+k2)
.

2
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Indivisibility of class numbers

• Trivial fact: hK = 1 ⇐⇒ hK 6≡ 0 (mod p) for all prime number p.

• Motivation comes from the Gauss class number 1 conjecture.

• Indivisibility result as the complement of the divisibility results.

• What is known towards the direction of simultaneous indivisibility of class
numbers of quadratic fields?
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Motivation from Byeon’s work

• In 2004, Byeon proved the following theorem.

Theorem (Byeon (2004))

Let t be a square-free integer. Then there exist a positive proportion of
fundamental discriminants D > 0 such that the class numbers of both Q(

√
D)

and Q(
√
tD) are indivisible by 3.

• Motivated by the conjecture by Iizuka, we ask the following question.

Question

Let ` ≥ 3 be a prime number and let t be a non-zero integer. Do there exist
infinitely many pairs of real (or imaginary) quadratic fields of the form
{Q(
√
D),Q(

√
D + t)} such that the class numbers of all of them are indivisible

by `?
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Statement of Theorem 2

Theorem 2 (With A. Saikia)

Let t ≥ 1 be an integer with t ≡ 0 (mod 4). Then there exist infinitely many
fundamental discriminants D > 0 with positive density such that the class
numbers of the real quadratic fields Q(

√
D) and Q(

√
D + t) are all indivisible

by 3.
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Lemma 1 (Horie and Nakagawa (1988))

Lemma 1 (Horie and Nakagawa)

Let m ≥ 1 and N ≥ 1 be two integers satisfying the following two conditions.

1 If p is an odd prime number such that p | gcd(m,N), then N ≡ 0
(mod p2) and m 6≡ 0 (mod p2).

2 If N is an even integer, then either N ≡ 0 (mod 4) and m ≡ 1 (mod 4) or
N ≡ 0 (mod 16) and m ≡ 8, 12 (mod 16).

For a positive real number X , let S+(X ) stand for the set of positive
fundamental discriminants D < X and let

S+(X ,m,N) = {D ∈ S+(X ) : D ≡ m (mod N)}.

For a fundamental discriminant D > 0, let r3(D) be the 3-rank of the ideal
class group ClQ(

√
D) of Q(

√
D). Then we have

lim
X→∞

∑
D∈S+(X ,m,N)

3r3(D)

|S+(X ,m,N)| =
4

3
. (3)
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Lemma 2 (Byeon (2004))

Lemma 2 (Byeon (2004))

Let m and N be two positive integers satisfying the hypotheses of Lemma 1
and let D be a fundamental discriminant. Then

lim inf
X→∞

|{D ∈ S+(X ,m,N) : h(D) 6≡ 0 (mod 3)}|
|S+(X ,m,N)| ≥ 5

6
. (4)

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Lemma 2 (Byeon (2004))

Lemma 2 (Byeon (2004))

Let m and N be two positive integers satisfying the hypotheses of Lemma 1
and let D be a fundamental discriminant. Then

lim inf
X→∞

|{D ∈ S+(X ,m,N) : h(D) 6≡ 0 (mod 3)}|
|S+(X ,m,N)| ≥ 5

6
. (4)

Jaitra Chattopadhyay IIT Guwahati Simultaneous divisibility and indivisibility properties of class numbers



Lemma 3 (Prachar (1958))

Lemma 3 (Prachar (1958))

Let k ≥ 1 and ` ≥ 1 be two integers with gcd(k, `) = 1. For a large positive
real number X , let

Q(X , k, `) = |{m ∈ N : m ≤ X ,m ≡ ` (mod k) and µ(m) 6= 0}|.

Then for any real number ε > 0, we have

Q(X , k, `) =
6

kπ2

∏
p|k

(
1− 1

p2

)−1

X + O(X
1
2 k−

1
4
+ε + k

1
2
+ε), (5)

and the error term is uniform in k.
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Proof of Theorem 2

• Let t ≥ 1 be a given integer with t ≡ 0 (mod 4).

• Choose positive integers m and N such that gcd(m,N) = gcd(m + t,N) = 1,
m ≡ 1 (mod 4) and N ≡ 0 (mod 4).

• For real number X > 0, let

L(X ) = {D ≤ X : D ≡ m (mod N), µ(D) 6= 0 and h(D) 6≡ 0 (mod 3)}

and

Lt(X ) = {D ≤ X : D ≡ m (mod N), µ(D+t) 6= 0 and h(D+t) 6≡ 0 (mod 3)}.

• Note that D ≡ m ≡ 1 (mod 4) and D + t ≡ m + t ≡ 1 (mod 4).

• Therefore, the integers in the sets L(X ) and Lt(X ) are fundamental
discriminants.
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Proof of Theorem 2 continued...

• Let S(X ) = {D ≤ X : D ≡ m (mod N)}.

• Since gcd(m,N) = 1, by Lemma 3, we have

lim
X→∞

Q(X ,N,m)

|S(X )| =
6

π2

∏
p|N

(
1− 1

p2

)−1

≥ 6

π2
. (6)

• Therefore, from equation (6) and Lemma 2, we get

lim inf
X→∞

|L(X )|
|S(X )| ≥

5

6
· 6

π2
=

5

π2
. (7)
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Proof of Theorem 2 continued...

• Similarly, for Lt(X ), we obtain

lim inf
X→∞

|Lt(X )|
|S(X )| ≥

5

6
· 6

π2
=

5

π2
. (8)

• Now, the principle of inclusion-exclusion yields

|L(X ) ∩ Lt(X )|
|S(X )| =

|L(X )|
|S(X )| +

|Lt(X )|
|S(X )| −

|L(X ) ∪ Lt(X )|
|S(X )| . (9)
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Proof of Theorem 2 continued...

• Since
|L(X ) ∪ Lt(X )|
|S(X )| can be at most 1, we conclude that

lim inf
X→∞

|L(X ) ∩ Lt(X )|
|S(X )| ≥ 5

π2
+

5

π2
− 1

=
10− π2

π2
> 0.

• This completes the proof of Theorem 2. 2
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