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Mathematical modeling

It is the process of using mathematics to solve real- world prob-
lems.

Mathematical models are basically a simplified description of a
system, built to help us better understand the operation of a
real system and the interactions of its main components.

Mathematical models are collections of variables, equations,
and starting values that form a cohesive representation of a
process or behavior.

The most important part of modeling is to make sure that the
concerned mathematical model can exhibit the well - known
system behaviors for the system under consideration.
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Utility of Mathematical Model

Interactions among the members of biological communities and
components of the abiotic environment are extremely com-
plex, mathematical models are useful for thorough understand-
ing how ecosystems function and for making predictions about
managing ecosystems.

Provide a way to design and evaluate protocols to manage and
control animal populations, natural resources (e.g., forests),
wildlife resources (e.g., fisheries, deer, tiger population), and
infectious diseases.

Researchers on animal conservation can make use of the models
to aid the accomplishment of field experiments, through the
indication of the parameters, which should be observed.
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Types of Mathematical Model

Deterministic or Stochastic models

Linear or Non-Linear

Static or Dynamic

Discrete or Continuous
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Basic steps in Modeling

Figure 1: Basic steps in Modeling
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Basic definitions and Tools

Basic Definitions

Ecological interactions: Ecological interactions are the relation-
ships between two species in an ecosystem . The interactions can
be categorized into many different classes, such as:

Predation is a biological interaction in which one species feeds
on another. Most of the interactions in a food web are preda-
tory. This interaction enhances the fitness of predators, but
reduces the fitness of the prey species.

Competition between two species occurs when they share a
limited resource and each tends to prevent the other from ac-
cessing it. This reduces the fitness of one or both species.
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Functional Responses: It is the relationship between an individ-
ual’s rate of consumption and food density. It describes the way a
predator responds to the changing density of its prey.
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Holling type II functional response:

Figure 2: Holling type-II functional response

where b and c are positive constants that describe the effects of capture
rate and handling time on the feeding rate of the predator. The number of
prey that a predator can consume is limited and consequently the predator
reaches a saturation level. Predators of this type cause maximum mortality
at low prey density.
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Equlibrium points: Equlibrium point is a state/ solution in which
the system does not change with time, in particular the state variable
remain constant.

An equilibrium point of a system is said to be hyperbolic if all
eigenvalues of the Jacobian matrix evaluated at the point have
non-zero real parts.

If at least one eigenvalue of the Jacobian matrix is zero or
has a zero real part, then the equilibrium is said to be non-
hyperbolic.
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Stability of an Equilibrium point: Stability (of ecosystem) refers
to the capability of a natural system to apply self-regulating mecha-
nisms so as to return to a steady state after an outside disturbance.

Local stability indicates that a system is stable over small short-
lived disturbances, while global stability indicates that the system is
highly resistant to changes in species composition and/ or food web
dynamics.
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Stable/ Lyapunov stable, Unstable, Asymptotically stable:Consider
an autonomous nonlinear dynamical system ẋ = f (x(t)), x(0) = 0,
where x(t)εD ⊆ Rn denotes the system state vector, D denotes an
open set containing the origin and f : D → Rn continous on D.
Suppose f has an equilibrium at x̄ then the equlibrium point x = x̄
is

Stable/Lyapunov stable, if for ε > 0, ∃ δ > 0 such that
‖x(0)− x̄‖ < δ, then for every t ≥ 0 we have ‖x(t)− x̄‖ < ε.

Unstable, if it is not stable.

Asymptotically stable if it is Lyapunov stable and ∃ δ > 0
such that ‖x(0)− x̄‖ < δ, then limt→∞x(t) = x̄ .
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Limit Cycle : A limit cycle is an isolated closed trajectory. Iso-
lated means that neighboring trajectories are not closed; they spiral
towards or away from the limit cycle.

A limit cycle is

stable, if for all x in some neighbourhood; the nearby trajectories
are attracted to the limit cycle,

unstable, if for all x in some neighbourhood; the nearby trajec-
tories are repelled from the limit cycle,

semistable, if it is attracted on one side and repelled on the
other.
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Bifurcation: The term bifurcation is commonly used in the study of
nonlinear dynamics to describe any sudden change in the behavior
of the system as some parameter is varied. At a point of bifurcation,
stability may be gained or loss. The bifurcation then refers to the
splitting of the behavior of the system into two regions: one above,
the other below the particular parameter value at which the change
occurs.
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Andronov-Hopf bifurcation: It is the appearance or disappear-
ance of a limit cycle from an equilibrium in dynamical systems gen-
erated by ODEs, when the equilibrium changes stability via a pair
of purely imaginary eigenvalues. Hopf bifurcation is of two types:

1 Supercritical Hopf: bifurcating periodic orbit is stable.

2 Subcritical Hopf: bifurcating periodic orbit is unstable.
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Mathematical Techniques/ Tools

The method of Characteristic roots:

1 Routh- Hurwitz criteria

2 Descarte’s rule of sign

Lyapunov direct method: Lyapunov’s direct method consists in
finding Lyapunov function. The major role in this process is played
by positive or negative definite functions.

Lyapunov function: Let D ⊆ Rn be an open neighbourhood of
the equilibrium point xe of a system ˙̄x = f (x̄), then the function
L : D → R, satisfying the following properties.

1 L is continously differentiable,

2 L > 0 ∀ x̄ ∈ D − {xe} and L(xe) = 0 is called Lyapunov
function.
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Routh-Hurwitz Criteria

Let the constant a1, a2, a3........, an be real numbers. The equation

L(λ) = λn+a1λ
n−1+−−−−−−−−−−−−−−−−−+an = 0 (1)

has roots with negative real parts iff the values of determinant of
the following matrices

H1 = (a1), H2 =

[
a1 1
a3 a2

]
,H3 =

a1 1 0
a3 a2 a1

a5 a4 a3

 , ..............,

Hn =


a1 1 0 −− 0
a3 a2 a1 −− 0
−− −− −− −− 0
−− −− −− −− −−

0 0 0 −− an

 are all positive
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Here (l ,m) entry in the matrix Hj is
a2l−m for 0 < 2l −m < n

1 for 2l = m

0 for 2l < m or 2l > n + m

In particular, for quadratic and cubic polynomials these condition
reduce to

i) a1 > 0, a2 > 0 and

ii) a1 > 0, a3 > 0, a1a2 > a3
(2)

respectively (Kot, 2001).
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Descartes’ Rule of sign

The characteristic polynomial of nth order can be taken in the form

p(λ) = anλ
n + an−1λ

n−1 +−−−−−−−−−−+a0, (3)

where the coefficient ai , i = 0, 1, 2......n are all real and an >
0 . Let N be the number of sign changes in the sequence of
coefficient{an, an−1, ....................., a0}, ignoring any which is zero.
Descartes’s rule of signs says that there are at most N roots of
(3) which are real and positive, further, that there are N, N − 2 or
N−4,........ real positive roots. By setting ω = −λ and again apply-
ing the rule, information is obtained about the possible real negative
roots. Together these often give valuable information on the sign of
all the roots, which from a stability point of view is usually all we
require (Murray, 1989).
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Sylvester Criterion

Let us consider an autonomous differential system of the form

ẋ = f (x) (4)

where,f ∈ C
[
Rn,Rn

]
and assuming that f is smooth enough to

ensure the existence and uniqueness of the solution of (4). Let
f (0) = 0 and f (x) 6= 0 for x 6= 0 in some neighbourhood of the
origin so that (4) admits the so-called zero solution (x = 0) and the
origin is an isolated critical point of (4).
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Let,

V (x) = xTBx =
n∑

i ,j=1

bijxixj , (5)

be a quadratic form with the symmetric matrix B = (bij), that is
bij = bji .
The necessary and sufficient condition for V (x) to be positive defi-
nite is that the determinant of all the successive principal minors of
the symmetric matrix B = (bij) be positive, that is,

b11 > 0,

∣∣∣∣b11 b12

b21 b22

∣∣∣∣ > 0, .............................,

∣∣∣∣∣∣∣∣
b11 b12 −− b1n

b21 b22 −− b2n

−− −− −− −−
bn1 bn2 −− bnn

∣∣∣∣∣∣∣∣ > 0.
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Let Sρ be a set Sρ = {xεRn : ‖x‖ < ρ} and let R+ = [0,∞ ) and
J = [t0,∞ ) , t0 ≥ 0. Suppose x(t) = x(t, t0, x0) is any solution of
(4) with the initial value x(t0) = x0 such that ‖x‖ < ρ for tεJ. Also,
since equation (4) is autonomous, we can further suppose, without
any loss of generality, that t0 = 0.

Theorem

If there exists a positive definite scalar function V (x) such that
V̇ (x) ≤ 0 on Sρ, then the zero solution of (4) is stable.
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Theorem

If there exists a positive definite scalar function V (x) such that V̇ (x)
is negative on Sρ, then the zero solution of (4) is asymptotically
stable.

Theorem

If there exists a scalar function V (x), V (0) = 0, such that V (x)
is positive definite on Sρ and if in every neighbourhood N of the
origin, N ⊂ Sρ, there is a point x0 where V̇ (x0) > 0, then the zero
solution of (4) is unstable.

where Sρ = {xεRn : ‖x‖ < ρ}.
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Prey-Predator Mathematical Model : An introduction

Lotka-Volterra model is one of the oldest and the simplest
model of predator-prey interactions. The model was developed
independently by Lotka (1925) and Volterra (1926). The Lotka-
Volterra equations, also known as the predator –prey equations,
are a pair of first-order, non –linear, differential equations fre-
quently used to describe the dynamics of biological systems in
which two species interact, one as a predator and the other as
prey. It is the basis of many models used present days in the
analysis of population dynamics & is one of the popular models
in mathematical ecology.
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The populations change through time according to the following
pair of equations:

ẋ = ax − bxy

ẏ = −cy + dxy
(6)

where, x is the number of prey (for example: rabbits), y is
the number of some predators (for example: foxes) ẋ and ẏ
represent the growth rates of the two populations over time, t
represent time, a is the growth rate of prey, b is the searching
efficiency or attack rate, c is the predator mortality rate and
d is the growth rate of predator or predator’s ability of turning
food into offspring.
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Predators and prey can influence one another’s evolution. Traits
that enhance a predator’s ability to find and capture prey will be
selected for in the predator, while traits that enhance the prey’s
ability to avoid being eaten will be selected for in the prey. The
”goals” of these traits are not compatible, and it is the inter-
action of these selective pressures that influences the dynamics
of the predator and prey populations. Predicting the outcome
of species interactions is also of interest to biologists trying to
understand how communities are structured and sustained.
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A General Predator prey model

The general form for a mathematical model that describes the dy-
namics between any two species having prey-predator interaction,
has the following structure.(Bairagi & Jana (2011))

dx

dt
= xf (x)− p(x , y)

dy

dt
= θp(x , y)− dy

(7)

where x(t) and y(t) represent the prey and predator population
density respectively at a given time t respectively. f (x) is the per
capita growth rate of prey in absence of predator and d is the food-
independent predator mortality rate. p(x , y) is the functional re-
sponse of predator, which is defined as the number of prey caught
per predator per unit of time. The term θp(x , y) is known as the
numerical response measuring the number of newly born predators
for each captured prey and θ(0 < θ < 1) is the conversion efficiency.
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Example: Effect of habitat complexity on rhinocers
and tiger population model with additional food and

Poaching on rhinoceros : An application to
Kaziranga National Park, Assam
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Ecosystem of Kaziranga National Park – Importance and
threats

Importance

Kaziranga national park is an important landmark in the world for holding
around 85% of the worlds One horned rhinocerous.

It is a home to high degrees of diversified species with great visibility.

Compared with other protected areas in India, Kaziranga has achieved
notable success in wildlife conservation.
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Threats

Threats to wildlife of Kaziranga National Park can be summed up as fol-
lows:

Poaching

Annual flood

Erosion

Siltation and weeds

Illegal fishing

Heavy traffic

Live stock grazing

Breach in embankments

Wildfires

Insect attack and pathological problems
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Field Data
Some of the data collected from PCCF Assam, regarding tiger, rhino and their
interactions are shown in the figures.

Figure 3: Rhino population in KNP since 1905

Figure 4: Total Rhino death in KNP due to poaching and natural causes
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Figure 5: Tiger population in KNP

Figure 6: Immature Rhino killed by Tiger in KNP
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Mathematical Model I
Assumptions

Based on the discussion on field data on KNP, some assumptions
and other factors of importance for the age structured prey-predator
model are given below:

The birth rate of the immature rhino population is proportional
to the existing mature rhino population with a proportionality
constant a1.

For the immature population, the death rate and transforma-
tion rate to mature are proportional to the existing immature
population with proportionality constants d1 and r1 respectively.

The natural death rate of mature prey is assumed to be d2.

The human poaching rate on mature prey is P.

According to the Forest Department of Assam there is no record
of death due to in-fight between mature and immature rhino, so
intra-specific competition between immature and mature rhino
is not considered here.
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Intra specific interference among mature rhinos is ρ.

Coefficient K (0 < K < 1) is the conversion efficiency, measuring the
number of newly born predators for each captured prey.

Tiger as predator population do not kill mature rhino for food easily as
for tiger other herbivores like swamp deer, buffalo are also available in
good number. Only 4 such cases found during 2013-2018 [Source: PCCF
Wildlife, Assam]; therefore in the model tiger and mature rhino interaction
is not considered.

From the data obtained from PCCF Wildlife, Assam

a1r1 > (d1 + r1)(d2 + P) (8)
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Figure 7: Schematic diagram for the model system (9)
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Model Equations

The model equations are as follows:

dx1

dt
= a1x2 − d1x1 −

ax1y

1 + ahx1
− r1x1,

dx2

dt
= r1x1 − d2x2 − Px2 − ρx2

2 ,

dy

dt
= −sy + K

ax1y

1 + ahx1
,

(9)

with initial conditions x1(0) > 0, x2(0) > 0, y(0) > 0. Here x1(t),
x2(t) and y(t) denote respectively the immature prey, mature prey
and predator population density at time t.
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Positivity and Boundedness of solutions

Positive Invariance: The system (9) can be put in the matrix form
as

˙̄X = F (X̄ ) with X̄ (0) = X̄0 ∈ R3
+, where X̄ = (x1, x2, y)T ∈ R3

+,

F (X̄ ) =

a1x2 − d1x1 − ax1y
1+ahx1

− r1x1

r1x1 − d2x2 − Px2 − ρx2
2

Kax1y
1+ahx1

− sy

 ,
F (X̄ ) : C+ → R3 and F ∈ C∞+ (R3).

It can be seen that whenever X̄ (0) ∈ R3
+ such that Xi = 0 then

Fi (X̄ )
∣∣∣
xi=0
≥ 0 for (i=1,2,3). Now any solution of ˙̄X = F (X̄ ) with

X̄0 ∈ R3
+, say X̄ (t) = X̄ (t, X̄0) is such that X̄ (t) ∈ R3

+ for all t > 0
(Nagumo 1942).
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Theorem

The set Ω1 = {(x1, x2, y) : 0 < x1 ≤
a2

1
4ρv , 0 < x2 ≤

a2
1

4ρv , 0 < y ≤
1
K

a2
1

4ρv , 0 < x1(t) + x2(t) + y(t)
K ≤ a2

1
4ρv } attracts all solutions in the

interior of the positive orthant, where, v = min{d1, d2 + P, s
K }.
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Existence of Equilibrium points
System (9) possesses the following equilibrium points:

E0(0, 0, 0) always exists.
E1(x̄1, x̄2, 0) exists under the condition (8), where,

x̄1 =
a1x̄2

d1 + r1
,

x̄2 =
a1r1 − (d2 + P)(d1 + r1)

(d1 + r1)ρ
.

E2(x∗1 , x
∗
2 , y
∗) exists, provided the conditions a1x

∗
2 >

s(d1+r1)
a(K−sh)

and K > sh are where,

x∗1 =
s

a(K − sh)
,

x∗2 =
−(d2 + P) +

√
(d2 + P)2 + 4r1sρ

a(K−sh)

2ρ
,

y∗ =
K

s

{
a1x
∗
2 −

s(d1 + r1)

a(K − sh)

}
.
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Local Stability Analysis

E0(0, 0, 0) is always a saddle point.
I E1(x̄1, x̄2, 0) is locally asymptotically stable, if, s > Kax̄1

1+ahx̄1
.

I Otherwise E1(x̄1, x̄2, 0) unstable.

The interior equilibrium point E2(x∗1 , x
∗
2 , y
∗) is locally

asymptotically stable iff{
d1 + r1 +

ay∗

(1 + ahx∗1 )2

}
(d2 + P + 2ρx∗2 ) > a1r1, (10)

i.e. the birth rate of the immature rhino and transformation
rate to mature rhino is less than a threshold value.
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Hopf-bifurcation
Existence

Considering poaching effect P as a bifurcation parameter, the necessary
and sufficient condition for Hopf-bifurcation to occur are

i) A1(P∗) > 0, A3(P∗) > 0,

ii) f (P∗) = A1(P∗)A2(P∗)− A3(P∗) = 0 and

iii) Re
[dλj
dP

]
P=P∗

6= 0, j = 1, 2, 3.

(11)

where P = P∗ is the critical value of P. A1, A2 and A3 are the coeffi-
cients in the characteristic equation of the variational matrix evaluated at
E2(x∗1 , x

∗
2 , y

∗) given by

λ3 + A1λ
2 + A2λ+ A3 = 0, (12)

41 / 97



with

A1 = d1 + r1 +
ay∗

(1 + ahx∗1 )2
+ d2 + P + 2ρx∗2 > 0,

A2 = (d1 + r1 +
ay∗

(1 + ahx∗1 )2
)(d2 + P + 2ρx∗2 ) +

Ka2x∗1y
∗

(1 + ahx∗1 )3
− a1r1,

A3 =
Ka2x∗1y

∗

(1 + ahx∗1 )3
(d2 + P + 2ρx∗2 ) > 0,

and λj is the eigen value of the variational matrix associated with
E2.
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Global Stability

In this section the global stability of the system of equations (9) is
discussed.

Theorem

If the following inequalities hold in the region Ω1 :

a) (d1 + r1)(1 + ahx∗1 ) > a2hx∗1y
∗,

b) 2
(
d1 + r1 −

a2hx∗1y
∗

1 + ahx∗1

)(4r1x
∗
1v

x∗2a
2
1

+ 1
)
>

a2
1

ρ
,

(13)

then the positive equilibrium point E2 is globally asymptotically
stable.
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Numerical Simulation

Numerical simulations are carried out in this section to validate the
analytical results that were obtained in the previous sections. The
parameter poaching rate ‘P’ is the key parameter that directly influ-
ence the dynamics of the system and ecologically balanced behavior
of the park. This section is divided into two parts based on:

i. The ecological behavior of the park , and

ii. The complex dynamical behavior of the system

For this some biologically feasible parameters are chosen that satis-
fies various analytical conditions.
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Ecological behavior of KNP

To see the ecological behavior of the park and to observe the effect
of key parameter ( poaching rate ‘P’) on ecological balance of KNP,
the following set of values of parameters are chosen:

a1 = 45, d1 = 5, a = 3, h = 0.02, r1 = 22, ρ = 2,

d2 = 0.3, P = 1, s = 1, K = 0.05,
(14)

with the initial conditions x1(0) = 1, x2(0) = 1 and y(0) = 1. These
values of parameters satisfy the local stability condition (Equation
3) of the system (2). Thus the positive equilibrium point is locally
asymptotically stable. Now, we will concentrate our attention to
maintain the ecological balanced behavior of the park.
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Figure 8: Ecologically balanced and imbalanced behavior of the park w.r.t
P
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For the set of values of parameters given in equation (14), it is
observed that when attacking rate by the tiger population (a =
3) and poaching effect (P = 1) is less, then the density of rhino
population is greater than tiger population (Fig. 8(a)). But if the
attacking rate (a = 5) increases, then the density of tiger population
also increases compared to rhino population (Fig. 8(b)). If the
attacking rate as well as poaching effect increase (a = 20,P = 10),
then the trajectories first oscillate and then go to the respective
equilibrium level. Here the density of tiger population is larger than
rhino population (Fig. 8(c)). Thus the park is in an ecologically
imbalanced situation. To recover from this situation, modification
in the model is required so that attacking rate can be minimized
and for maintainance of the ecological balance of the park.
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Complex dynamical behavior of the system

Stability of the interior equilibrium point

To see the dynamical behavior of the system, the following set of
values of the parameters

a1 = 45, d1 = 5, a = 20, h = 0.02, r1 = 22, ρ = 2,

d2 = 0.3, P = 10, s = 1, K = 0.05,

(15)

are chosen with the initial conditions (1; 1; 1) and the positive
equilibrium point E2(1.6668, 2.4214, 3.1980) is obtained.
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These set of parameters satisfy the local as well as global stability of
conditions (10) and (13). The trajectories of x1, x2 and y are plotted
in Fig (9) and it is observed from Fig. (9(a)) that all the trajectories
starting from (1, 1, 1), first oscillate and then go to their respective
equilibrium levels. Fig. (9(b)) shows that the trajectory starts from
the different initial point converges to the positive equilibrium point.
This proves the local and global stability behavior of the system
around the positive equilibrium point. It is also observed from Fig.
(9(a)) that as the attacking rate by the tiger population on immature
rhino is high and due to the effect of poaching, the immature rhino
and mature rhino go to the lower level and tiger population goes to
higher equilibrium level.
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Figure 9: (a) Local (b) Global stability of unique positive equilibrium (c)
Oscillation behavior and (d) Limit cycle w.r.t P = 12.45 > P∗ = 12.15
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Graph trajectory of immature rhino, mature rhino and tiger
population considering poaching as a bifurcation parameter

The oscillation behavior of the rhino as well as the tiger popula-
tion and also limit cycle through Hopf bifurcation are observed con-
sidering the poaching effect ‘P’ as a bifurcation parameter. The
critical point of poaching is P = P∗ = 12.15. Thus, considering
P = 12.45 > P∗ and other values same as (15), it is noticed that
the trajectories starting from the inital point (1,1,1), oscillate with
respect to time t (Fig. (9(c)) and also limit cycle around the pos-
itive equilibrium point (Fig. (9(d)). Thus the positive equilibrium
point becomes unstable now. Thus to make it stable it will be better
to concentrate the attention to control the poaching effect of the
mature rhino.
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Again if the attacking rate on the immature rhino by the tiger pop-
ulation increases then the positive equilibrium point E2 becomes
unstable. For the set of values of parameters (15) with initial point
(1,1,1) and a = 25(> a∗ = 23.5), the system shows oscillation
behavior and limit cycle (Fig.10(a-b)). Thus to control the attack-
ing rate on immature rhino by the tiger population, modification is
required in the model.
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Figure 10: (a) Oscillatory behavior (b) Limit cycle of the system (3.2)
w.r.t a = 25 > 23.5 = a∗
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Discussion & Conclusion

According to the census report and real data collected from
PCCF Wildlife, Assam, on Kaziranga National Park (KNP),
a mathematical models is formulated and analyzed to under-
stand the dynamics of rhino (prey) and tiger (natural enemy,
the predator) interaction. As the tiger feeds on immature rhino,
stage structure is considered on the rhino population by classi-
fying them into two sub populations: immature rhino (horn not
developed) and mature rhino (horn developed). In view of ecol-
ogy, the main objective of this study is to increase the size of
the rhinoceros population in this park and also to maintain the
ecological balance of the park. From the mathematical point
of view, the stability and complex dynamical behavior of the
system are analyzed for the model.
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The first part in the numerical simulation section describes the
ecologically behavior of the park while the second discusses the
complex dynamical behavior.The park is considered to be in a
state of ecological balance if it maintains higher densities of
the rhino population compared to tiger population otherwise
ecologically imbalanced. It is observed that if the poaching
effect and/or attacking rate are higher, then the park is in
ecologically imbalanced situation.
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In the second part it is observed that if the poaching effect
increases, then the positive equilibrium point becomes unsta-
ble showing its bifurcation behavior. Also, from the field data
(during 1981-1996) it was observed that due to the increase of
poaching effect there was a little fluctuation in the rhino popu-
lation. The numerical simulation results are consistent with the
real situation. Thus if the poaching rate is increased beyond
a threshold value, an adverse effect on the rhino population is
observed which could lead them towards extinction. Again, if
the attacking rate on immature rhino by tiger population in-
creases, the positive equilibrium point becomes unstable. To
control the attacking rate and the oscillation behavior of the
system, some modifications has to be introduced.
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Mathematical Model-II

From the data collected from PCCF Wildlife, Assam, it was observed
that the tiger population preys not only on the immature rhino but
also on other herbivores of KNP. The previous system (Mathematical
model-I) was formulated by considering the rhino as the main food
for tiger. In this section, the other herbivores are considered as
”additional food” for tiger population and accordingly, the system
(9) is modified by modifying the functional response to make way
for availability of additional food for the predator.
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Let the predator population be provided with additional food of con-
stant biomass M, which is distributed uniformly in the habitat. It
is assumed that the additional food is non-reproducing and is sup-
plied at a constant rate. The number of additional food encounters
per predator is proportional to the density of additional food. The
proportionality constant characterizes the ability of the predator to
identify the additional food (Srinivasu et al. [39]).
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Based on the discussion of Sahoo & Poria [30] and Samanta et al.
[31], let, hx , hM denote tiger’s handling time for rhino and additional
food and ex , eM represent tiger’s searching efficiency for rhino and
additional food respectively, then
µ = hM

hx
indicates how long it takes the tiger to handle additional

food relative to rhino population. This parameter characterizes qual-
ity of additional food. If µ > 1 (i.e. hM > hx), then the tiger can
easily capture immature rhino than additional food and it implies
that the additional food available is of poor quality. And if, µ < 1
then the additional food available is of rich quality.
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η = eM
ex

indicates the ease with which tiger detects additional food
relative to rhino population.
A = ηM represents the quantity of additional food for the tiger as
it is directly proportional to the biomass of the additional food (M).
Thus the Holling type-II functional response with additional food M
is modified into the following form:

g(x) =
ax

1 + ahx + µA
. (16)
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Thus, considering Sahoo & Poria [30], Samanta et. al. [31] and the
functional response (17) the system of equations become

dx1

dt
= a1x2 − d1x1 −

ax1y

1 + µA + ahx1
− r1x1,

dx2

dt
= r1x1 − d2x2 − Px2 − ρx2

2 ,

dy

dt
= −sy +

Kax1y

1 + µA + ahx1
+

Kµy

1 + µA + ahx1
,

(17)

with initial conditions x1(0) > 0, x2(0) > 0 and y(0) > 0.
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In the following lemma, we show that all solutions of system (17) are
bounded which implies that the system is ecologically well behaved.

Lemma

The set Ω2 =
{

(x1, x2, y) : 0 < x1 ≤
a2

1
4ρd0

, 0 < x2 ≤
a2

1
4ρd0

,

0 < y ≤ 1
K

a2
1

4ρd0
, 0 < x1(t) + x2(t) + y(t)

K ≤ a2
1

4ρd0

}
attracts all

solutions in the interior of the positive orthant, where
d0 = min{d1, d2 + P, s − Kµ

1+µA} and s > Kµ
(1+µA) .
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In the following section we analyze the system (17).

The system (17) has three non-negative equilibria as shown below.

i. O0(0, 0, 0) always exists.
ii. O1(x̃1, x̃2, 0) exists under the condition (8), where x̃1, x̃2 are

same as x̄1, x̄2 of the system (9).
iii. O2(ẍ1, ẍ2, ÿ) exists if

s(1 + µA) > Kµ and K > sh, (18)

where,

ẍ1 =
s(1 + µA)− Kµ

a(K − sh)
,

ẍ2 =

−(d2 + P) +

√
(d2 + P)2 + 4r1ρ

{
s(1+µA)−Kµ

a(K−sh)

}
2ρ

,

ÿ =
K{1 + µ(A− h)}
{s(1 + µA)− Kµ}

[a1ẍ2 − (d1 + r1)ẍ1].
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Here the local as well as global stability of the system (17) around
the equilibrium points are discussed. The results are given below:

i. The equilibrium point O0(0, 0, 0) is always a saddle point.
ii. The equilibrium point O1(x̃1, x̃2, 0) is

a) locally asymptotically stable if s > K(ax̃1+µ)
1+ahx̃1+µA ,

b) otherwise it is a saddle point.

iii. The interior equilibrium point O2(ẍ1, ẍ2, ÿ) is locally
asymptotically stable iff{

d1 + r1 +
aÿ(1 + µA)

(1 + µA + ahẍ1)2

}
(d2 + P + 2ρẍ2) > a1r1. (19)

i.e. the birth rate of the immature rhino and transformation
rate to mature rhino is less than a modified threshold value.
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1 The positive equilibrium point O2 is globally asymptotically
stable in the region Ω2 under the following conditions:

a) (d1 + r1)(1 + µA)(1 + ahẍ1 + µA) > a2hẍ1ÿ ,

b) 2
{
d1 + r1 −

a2hẍ1ÿ

(1 + µA)(1 + ahẍ1 + µA)

}{
1 +

4d0ẍ1r1
ẍ2a2

1

}
>

a2
1

ρ
.

(20)
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Proof.

The positive definite function about O2 is

V2(x1, x2, y) = (x1 − ẍ1)2 + (x2 − ẍ2 − ln
x2

ẍ2
) + l1(y − ÿ − ln

y

ÿ
),

where, l1 is a suitable constant to be determined.
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Numerical simulation for Model II

Behavior of the park for the system (17)

To see the ecological behavior of the park and to observe the effect
of key parameters ( poaching rate ‘P’, the quality ‘µ’, quantity ‘A’
of the additional food on ecological balance of KNP, the following
set of values of parameters are chosen:

a1 = 45, d1 = 5, a = 3, h = 0.02, r1 = 22, ρ = 2,

d2 = 0.3, P = 1, s = 1, K = 0.05, µ = 0, A = 0
(21)

with the initial conditions x1(0) = 1, x2(0) = 1 and y(0) = 1.
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As mentioned earlier, µ indicates the quality of the additional food.
Thus µ is divided into two parts : µ > 1 i.e. additional food
is of poor quality and µ < 1, i.e. the additional food is of high
quality. Then for different values of A, the behavior of immature
rhino, mature rhino and tiger population with respect to time t are
given in Figs (11) and (12). Thus this section is divided into two
subsections:
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i. µ > 1 i.e. when the additional food is of poor quality.
For the values of parameters (21) with a = 20, P = 10, µ =
10, A = 0.2, it is observed from Fig. (11(a)) that the tiger pop-
ulation settles in the higher equilibrium level whereas the rhino
go to the lower equilibrium level. Thus the park is not showing
ecologically balanced behavior. But if the value of A increases
i.e. A = 0.5 (Fig. 11(b)), the density of rhino population in-
creases and goes to a higher equilibrium level compared to the
density of tiger population. So, the park is showing ecologically
balanced behavior.
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Figure 11: Ecologically imbalanced and balanced behavior of the system
(17) w.r.t A for µ > 1
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ii. µ < 1 i.e. when the additional food is of high quality:
Choosing the same set of values of parameters (21) with
a = 20, P = 10, µ = .4, A = 3, it is observed from Fig.
(12(a)) that the density of the tiger population is higher than
densities of rhino population. Thus the park is in an
ecologically imbalanced situation. But the behavior changes if
the value of A increases (i.e. for A = 5, Fig. (12(b)).
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Figure 12: Ecologically imbalanced and balanced behavior of the system
(17) w.r.t A for µ < 1
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Thus the balanced behavior of the park can be maintained by in-
creasing the quantity of the additional food.

But to maintain the balanced behavior of the park in the presence of
poor or high quality with poor quantity of the additional food, high
attacking rate, poaching effect, some effort is needed to recover this
situation.
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Dynamical behavior of the system

To see the dynamical behavior of the system, the following set of
values of the parameters

a1 = 45, d1 = 5, a = 20, h = 0.02, r1 = 22, ρ = 2,

d2 = 0.3, P = 10, s = 1, K = 0.05,

(22)

are chosen with the initial conditions (1; 1; 1) and the positive
equilibrium point E2(1.6668, 2.4214, 3.1980) is obtained.
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Graph trajectory of immature rhino, mature rhino and tiger popula-
tion for different values of additional food quantity A
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Figure 13: (a) Oscillatory behavior (b) Stable behavior of the positive
equilibrium point w.r.t a
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In this section the system (17) has been studied with poaching on the
mature rhino and additional food for the tiger population. We have
chosen the set of values of parameters (22) with high attacking rate
and poaching effect (i.e. a = 25,P = 20) i.e. the system is showing
oscillation behavior. Now the quality and quantity of the additional
food i.e. (µ = 10, A = 0.01) is added to the system. Here it is
observed that the equilibrium point remains unstable (Fig.13(a)).
But if the value of the quantity of the additional food increases
(i.e. A = 0.1), then the positive equilibrium point becomes stable
(Fig.13(b)).
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Mathematical Model-III

In the previous section, presence of additional food was considered to
save the immature rhino from tiger population. At the same time, to
increase the immature rhino population specific effort is needed. If,
the rhino is kept in a reserved region where the rhino tiger interaction
is less and poaching is greatly reduced then, the rhino population
may eventually increase. Keeping all these in mind, the habitat
complexity is introduced in the system and accordingly, the Holling
type-II functional response followed by Dubey et. al. [4], Sahoo&
Poria [30] is modified.
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Again, the existence of habitat complexity reduces the interaction
rate between prey and the predator thereby reducing the probability
of capturing prey by reducing the searching efficiency of the predator.
Winfield [44] proved that the habitat complexity is more likely to
affect the attack coefficient than the handling time. Thus the attack
rate a is replaced by a(1− c), where c is a dimensional less quantity
that measures the degree of habitat complexity with 0 < c < 1
and it reduces the predation rate. Again based on the discussion
of Dubey et. al. [4] and Sahoo & Poria [30], the Holling type-
II functional response with habitat complexity is modified into the
following form:

g(x) =
a(1− c)x

1 + a(1− c)hx + µA
. (23)

It is to be noted, when c = 0 i.e. when there is no complexity and
µ = 0, we get back the Holling Type II response function.
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Thus considering the modified Holling type-II functional response
(i.e. Equation (24)), the system of equations become:

dx1

dt
= a1x2 − d1x1 −

a(1− c)x1y

1 + µA + a(1− c)hx1
− r1x1,

dx2

dt
= r1x1 − d2x2 − Px2 − ρx2

2 ,

dy

dt
= −sy +

Ka(1− c)x1y

1 + µA + a(1− c)hx1
+

Kµy

1 + µA + a(1− c)hx1
,

(24)

with initial conditions x1(0) > 0, x2(0) > 0 and y(0) > 0, where c
(0 < c < 1) is a dimensionless constant representing the degree of
habitat complexity.
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In the following Theorem, we show that all solutions of system (24)
are bounded.

Lemma

The set Ω3 =
{

(x1, x2, y) : 0 < x1 ≤
a2

1
4ργ , 0 < x2 ≤

a2
1

4ργ ,

0 < y ≤ 1
K

a2
1

4ργ and 0 < x1(t) + x2(t) + y(t)
K ≤ a2

1
4ργ

}
attracts all

solutions in the interior of the positive orthant, where
γ = min{d1, d2 + P, s − Kµ

1+µA} and s > Kµ
1+µA .
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In the following section we analyze the system (24).

The system (24) has three non-negative equilibria as shown below.

i. N0(0, 0, 0) always exists.

ii. N1(x̆1, x̆2, 0), exists under the condition of (8).

iii. N2(x̂1, x̂2, ŷ) exists under the condition same as (18) where,

x̂1 =
s(1 + µA)− Kµ

a(K − sh)(1− c)
,

x̂2 =
−(d2 + P) +

√
(d2 + P)2 + 4x̂1ρr1
2ρ

,

ŷ =
K{1 + µ(A− h)}
{s(1 + µA)− Kµ}

[a1x̂2 − (d1 + r1)x̂1].

(25)
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Here the local as well as global stability of the system (24) around
the equilibrium points are discussed. The results are given below:

i. The equilibrium point N0(0, 0, 0) is always saddle.
ii. The equilibrium point N1(x̆1, x̆2, 0) is

a) stable if s > K [a(1−c)x̆1+µ]
1+ah(1−c)x̆1+µA ,

b) otherwise it is unstable.

iii. The interior equilibrium point N2(x̂1, x̂2, ŷ) is locally
asymptotically stable iff

a1r1 <
{
d1 + r1 +

a(1− c)(1 + µA)ŷ

(1 + µA + a(1− c)hx̂1)2

}
(d2 + P + 2ρx̂2).

(26)
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1 If the following conditions hold true

a) (d1 + r1)(1 + µA){1 + ah(1− c)x̂1 + µA} > a2(1− c)2hx̂1ŷ ,

b) 2
{
d1 + r1 −

a2(1− c)2hx̂1ŷ

(1 + µA)(1 + ah(1− c)x̂1 + µA

}
(

4r1x̂1γ

x̂2a2
1

+ 1)

>
a2

1

ρ
(27)

then N2 is globally asymptotically stable in the region Ω3 .
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Proof.

The positive definite function about N2 is

V3(x1, x2, y) = (x1 − x̂1)2 + (x2 − x̂2 − ln
x2

x̂2
) + l2(y − ŷ − ln

y

ŷ
),

where, l2 is a suitable constant to be determined.

84 / 97



Numerical simulation for Model III

For the following set of values of parameters are chosen:

a1 = 45, d1 = 5, a = 3, h = 0.02, r1 = 22, ρ = 2,

d2 = 0.3, P = 1, s = 1, K = 0.05, µ = 0, A = 0
(28)

with the initial conditions x1(0) = 1, x2(0) = 1 and y(0) = 1.
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Behavior of the park for the system (24)

This section is also divided into two subsections.

i. When µ > 1 i.e. For set of values of parameters (28) with
a = 20, P = 10, µ = 10, A = 0.2 i.e. when the park is
in imbalanced situation, if the habitat complexity is introduced
but in a little amount (i.e. c = 0.2), it is seen from Fig. (14(a))
that the density of tiger population is little higher than rhino
population. That is the park is still in imbalanced situation.
But if the value of habitat complexity increases i.e. c = 0.5,
then the situation reverse (Fig. 14(b)) i.e. density of rhino is
greater than density of tiger population. Thus the balanced
behavior of the park is maintained by increasing the habitat
complexity.
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Figure 14: Ecologically imbalanced and balanced behavior of the system
(24) w.r.t c for µ > 1
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1 When µ < 1
Similarly, introducing the habitat complexity (c) in the system
(24) but in a small amount (i.e. c = 0.2), the park is showing
ecologically imbalanced situation for the set of values of
parameters (28) with a = 20, P = 10, µ = .4, A = 3 (Fig.
15(a)). But if c increases (i.e. c = 0.5), the park maintains
the balanced behavior (15(b)).
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Figure 15: Ecologically imbalanced and balanced behavior of the system
(24) w.r.t c for µ < 1
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Thus it is observed that if the attacking rate and poaching effect
increase, the park is in an ecologically imbalanced situation. But,
by introducing good quantity of additional food for the tiger pop-
ulation and/or habitat complexity on immature rhino population,
ecologically balanced behavior can be maintained.
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Dynamical behavior of the system

Graph trajectory of immature rhino, mature rhino and tiger
population for different values of habitat complexity c: When
the quantity of the additional food is less (i.e. Fig. 13(a)), to control
the oscillation behavior, the habitat complexity is used. From Fig.
(16(a)), it is observed that when it is small i.e. c = 0.1, then the
equilibrium point still unstable but if c increases (i.e. c = 0.4), then
stable behavior of the system can be seen (Fig.16(b)). If the value
of c increases further (i.e. c = 0.8), the balanced behavior of the
park is maintained.
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Figure 16: (a) Oscillatory behavior (b) Stable behavior of the positive
equilibrium point w.r.t c
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Discussion & Conclusion

Though Kaziranga is famous all over the world for the Greater
one-horned rhinoceros, many other herbivores are also present
in really good number and the tiger preys on them too. Thus,
the previous system is modified by modifying the Holling type-II
functional response incorporating the effect of additional food
availability.The analytical results describe the effect of addi-
tional food on the dynamics of the previous system.

As the natural land-form provides certain degree of protection
to the immature rhino from the tiger population. So to in-
crease the number of rhino and to maintain the ecological bal-
ance of KNP, the second system is further extended by in-
troducing habitat complexity in the Holling type-II functional
response. The previous analytical results are modified with the
factor habitat complexity for this system.
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Discussion & Conclusion

It is observed that if the poaching effect and/or attacking rate
are higher, then the park is in ecologically imbalanced situation.
This imbalanced situation can be controlled by introducing ap-
propriate amount of additional food and habitat complexity.

In the first system it is observed that if the poaching rate is in-
creased beyond a threshold value, an adverse effect on the rhino
population is observed which could lead them towards extinc-
tion. Again, if the attacking rate on immature rhino by tiger
population increases, the positive equilibrium point becomes
unstable. To control the attacking rate and the oscillation be-
havior of the system, the additional food and habitat complexity
become important parameters.
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