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Motivation



Classification of objects - a natural problem

The “classification” of objects in a family is a very natural 
problem in any branch of science. 

In mathematics, the classification problem has been 
considered for many families, such as topological spaces, 
knots, surfaces, graphs, groups etc. 

To mention specifically, the classification of the finite 
simple groups (CFSG) is one of the most celebrated 
achievements of the last century in the area of 
mathematics.



Greatest intellectual achievement 

Please follow the link

OR
Visit the homepage of Prof. Hugo de Garis.

https://profhugodegaris.wordpress.com/youtube-lecture-course-
humanitys-greatest-intellectual-achievement-the-classification-

theorem-of-the-finite-simple-groups/

Is classification of finite simple groups the 
greatest intellectual achievement ? 



Classification of finite p-groups

It is well documented that finite p-groups play important 
role in describing the structure of finite groups. 

These groups, up to order , were classified early in the 
history of group theory, and modern work has extended 
these classifications up to the order . 

For more details, please follow the 

p4

p7

https://www.math.auckland.ac.nz/~obrien/
recent_work.htm

Or
visit the homepage of Prof. Eamonn O’Brien. 

https://www.math.auckland.ac.nz/~obrien/
https://www.math.auckland.ac.nz/~obrien/


Classification of finite p-groups - difficulty and a new approach

The number of p-groups grows so quickly that further 
classifications along these lines seem a near-
impossible task. 

To reduce the difficulty, the classification problem in 
p-groups is, nowadays, done by considering a specific 
condition on them, such as isoclinism, coclass, 
exponent, derived length, etc.  

One such condition, in which we are interested here, is 
the sizes of conjugacy classes in a group.



Definitions  
and  

Examples



Conjugacy class

The conjugacy class of  in  is defined as 

. 
The centraliser of x in G is defined as 

.

x G
xG = {xy = y−1xy ∣ y ∈ G}

CG(x) = {y ∣ xy = yx}

All groups, we are going to discuss here, are finite. 
  
For a group  and element ,G x ∈ G

It is easy to see that  ∣ CG(x) ∣ × ∣ xG ∣ = ∣ G ∣ .



Conjugate type / rank

A group  is said to be of conjugate type 
, where , 

if ’s are precisely the different sizes of 
conjugacy classes of . Here, we also say 
that the group  is of conjugate rank . 

Immediate that a group  is abelian if and 
only if  is of conjugate type ( 1 ).

G
(1 = m0, m1, …, mr) 1 = mo < m1 < … < mr

mi
G

G r

G
G



Consider the symmetric group  
 There are 3 conjugacy 

classes, namely,   

 and  

   

Thus  is of conjugate type (1, 2, 3).

S3 = {e, (1 2), (1 3),
(2 3), (1 2 3), (1 3 2)} .

{e},

(1 2 3)S3 = {(1 2 3), (1 3 2)} = (1 3 2)S3,

(1 2)S3 = {(1 2), (1 3), (2 3)} = (1 3)S3 = (2 3)S3 .

S3

Example -  is conjugate type (1, 2, 3)S3



Isoclinism



Isoclinism of groups - P.Hall, 1940
Roughly speaking, two groups are isoclinic, if their commutator 
maps are essentially the same.  

Let  be a finite group and . Then the commutator map 
, given by  is well defined.                                     

X X = X/Z(X)
CX : X × X ↦ X′� CX(xZ(X), yZ(X)) = [x, y]

Two Finite groups  and  
are said to be isoclinic if 

there exists an isomorphism 
 and an 

isomorphism  such 
that the following diagram 

is commutative; 

G H

ϕ : G → H
θ : G′� → H′ �



Some facts

Let  be an abelian group and  
be an arbitrary group. Then both the 
groups  and  are isoclinic. 
A group G is isoclinic to the 
trivial group 1 if and only if G is 
abelian.

A G

G G × A



Example

Consider the two extra-special p-groups, 
p>2, 

 

and 

G = ⟨a, b, c ∣ ap = bp = cp = 1 = [a, b] = [a, c], c−1bc = ab = ba⟩
≅ (Zp × Zp) ⋊ Zp,

H = ⟨x, y ∣ xp2 = yp = 1,x−1yx = x1+p⟩
≅ (Zp2 × Zp) ⋊ Zp .



Stem groups

Isoclinism is an equivalence relation, and each equivalence 
class is called an isoclinic family. 

Let  be a finite p-group. Then there exists a p-group  in 
the isoclinic family of  such that . 

Such a group  is called a stem group in its isoclinic 
family. 

Stem groups are not unique in a isoclinic family.

G H
G Z(H) ≤ H′�

H



Example - continue

Note that  

Thus,  

Now, it is easy to check that the maps  and  
defined as  

  and   

extend to an Isoclinism. 

Z(G) = ⟨a⟩ = G′ � ≅ Zp ≅ Z(H) = ⟨xp⟩ = H′ �.

G/Z(G) = ⟨b, c⟩ ≅ Zp × Zp ≅ ⟨x, y⟩ = H/Z(H) .

ϕ θ

ϕ(b) = x, ϕ(c) = y, θ(a) = xp



Easy exercise

Check that  

 
and 

  

are isoclinic.

Q8 = {±1, ± i, ± j, ± k ∣ i2 = j2 = k2 = − 1 = ijk}

D4 = ⟨x, y ∣ x2 = y2 = 1 = (xy)4⟩



Relation between isoclinism and conjugate type

Two isoclinic groups 
are of same 

conjugate type.



Conjugacy class 
sizes in groups



Initiated by N. Ito, 1953

In a series of paper, Ito studied finite groups



Ito’s findings

All finite groups of conjugate rank 1 (i.e., exactly two 
conjugacy class sizes) are necessarily nilpotent. 

All finite groups of conjugate rank 2 (i.e., exactly three 
conjugacy class sizes) are necessarily solvable. 

If  is a finite simple group of conjugate rank 3 (i.e., 
exactly four conjugacy class sizes), then  is isomorphic to 

G
G

SL(2, 2m), m ≥ 2.



Groups with two conjugacy class sizes

Theorem (N. Ito, 1953):  
Let  be a finite group with exactly two conjugacy 
class sizes, namely  and . Then , for some 
prime  and integer . 
Moreover , where  is an abelian subgroup 
of  and  is a non-abelian slow subgroup of . 

Thus, the investigation boils down to the study of 
finite groups of conjugate type   

G
1 m > 1 m = pk

p k ≥ 1
G = P × A A p′�−

G P p− G

p− (1, pn), n ≥ 1.



Some more results

Let  be a p-group of conjugate type 
. Then the number of elements 

in any generating set is at least n.  

Moreover, the number of elements of 
order  in the center  is at least 

G
(1, pn)

p Z(G)
pn .



Example: nilpotency class 3 and conjugate type (1, p2), p ≥ 3

H = ⟨a1, a2, b, z1, z2 ∣ [a1, a2] = b, [ai, b] = zi, ap
i = 1, i = 1, 2⟩ .

The group  is of order  and exponent . 

The commutator subgroup  is of order . 

The centre  is of order  and lies inside 
commutator subgroup. Hence  is a stem group. 

For each , the centraliser  is of 
order . 

Thus, the conjugacy class sizes of all non-central 
element is , and consequently  is of conjugate type 

. 

H p5 p

H′� = ⟨b, z1, z2⟩ p3

Z(H) = ⟨z1, z2⟩ p2

H

x ∈ H∖Z(H) CH(x) = ⟨x, Z(H)⟩
p3

p2 H
(1, p2)



Example: nilpotency class 2 and conjugate type  
Special p-group

(1, pr), p ≥ 3, r ≥ 1

The group  is a special p-group generated by r+1 elements and of 
order . 

The commutator subgroup  = the center  is generated by 
 and thus elementary abelian p-group of order 

. Thus  is a stem group. 

For each , the centraliser  is of order 
.  

Thus the conjugacy class sizes of all non-central element is , and 
consequently  is of conjugate type .

Gr
pr(r+1)/2pr+1 = p(r+1)(r+2)/2

G′�r Z(Gr)
[ai, aj], 1 ≤ i < j ≤ r + 1,
pr(r+1)/2 Gr

x ∈ Gr∖Z(Gr) CGr
(x) = ⟨x, Z(Gr)⟩

pr(r+1)/2p

pr

Gr (1, pr)

Gr = ⟨a1, a2, …, ar+1 ∣ ap
i = [aj, ak]p = 1 = [[ai, aj], ak], 1 ≤ i, j, k ≤ r + 1⟩



Camina group
Definition: A group  is said to be Camina, if  for all 

.  

If  is a non-abelian Camina group, then In 
particular,  is a stem group. 

If  is a Camina group of nilpotncy class 2, then  

If   is a Camina group of nilpotency class 2, then  is of 
conjugate type .  

It follows that if   is a Camina group of nilpotency class 2, 
then  is necessarily a p-group.

G [x, G] = G′ �,
x ∈ G∖G′�

G Z(G) ≤ G′�.
G

G Z(G) = G′�.

G G
(1, ∣ Z(G) ∣ )

G
G



Example: Camina p-group of nilpotency class 2 

 is a Camina p-group of nilpotency class 2 
generated by 2m elements. 

    is of order . 

  is of conjugate type . 

U3(pm)

Z(U3(pm)) = U3(pm)′� = [
1 0 α
0 1 0
0 0 1] : α ∈ 𝔽pm pm

U3(pm) (1, pm)

Let  stands for a finite field of  elements. Consider the group  

.

Fpm pm

U3(pm) =
1 α1 α2

0 1 α3

0 0 1
: α1, α2, α3 ∈ 𝔽pm



Comparison between the two examples of nilpotency class 2 

Let  be a Camina p-group of nilpotency class 2 
with  and  be a central 
subgroup of order Then  is a Camina p-
group with  

 is stem group of conjugate type  and 
generated by  elements. 

Recall that  is a stem group of conjugate type 
 and generated by  elements.

G
∣ Z(G) ∣ = pm+n, n ≥ 1, A ≤ Z(G)

pn . G/A
∣ Z(G/A) ∣ = pm .

G/A (1, pm)
2(m + n)

Gm
(1, pm) m + 1



An open problem 

Does there exists a stem group 
 of conjugate type , 

and minimally generated by  
 elements? 

G (1, pn), n ≥ 3

k, n + 1 < k < 2n



1953 - 1999 : Not much progress 

If  is of conjugate type , then  

If  is of conjugate type , then nilpotency class 
of  is 2.

G (1, pn) exp(G/Z(G)) = p .

G (1, 2n)
G

I. M. Isaacs, Groups with many equal classes, Duke 
Mathematical Journal, 37(3), 501-506, 1970 
Let  be a finite group, which contains a proper normal sub-
group  such that all of the conjugacy classes of  which lie 
outside  have the same sizes. Then either  is cyclic or 
every non-identity element of  has prime order.

G
N G

N G/N
G/N



A major breakthrough 

K. Ishikawa, On finite p-groups which have only two 
conjugacy lengths, Israel J. Math, 129, 119-123, 2002 

  

If  is a finite p-group of 
conjugate type   
then nilpotency class of  is 

either 2 or 3.

G
(1, pn), p > 2,

G



Finite p-groups of conjugate type (1, p) 

K. Ishikawa, Finite p-groups up to 
isoclinism, which have only two conjugacy 
lengths, J. Algebra, 220, 333-345, 1999 

  

A finite p-group  is of conjugate 
type  if and only if  is 
isoclinic to a extra-special p-group.

G
(1, p), G



Finite p-groups of conjugate type  and nilpotency class 2 (1, p2)

K. Ishikawa, Finite p-groups up to isoclinism, which have 
only two conjugacy lengths, J. Algebra, 220, 333-345, 1999 

  
A finite p-group  is of conjugate type  and 
nilpotency class 2 if and only if  is isoclinic to 
one of the following:

G (1, p2)
G

a Camina p-group with commutator subgroup of order . 

 

p2

G2 = ⟨a1, a2, a3 ∣ ap
i = [aj, ak]p = 1 = [[ai, aj], ak], 1 ≤ i, j, k ≤ 3⟩ .



Finite p-groups of conjugate type  and nilpotency class 3(1, p2)

K. Ishikawa, Finite p-groups up to isoclinism, which have 
only two conjugacy lengths, J. Algebra, 220, 333-345, 1999 

  

A finite p-group  is of conjugate 
type  and nilpotency class 3 if 
and only if  is isoclinic H defined 

as follow, 

G
(1, p2)

G

H = ⟨a1, a2, b, z1, z2 ∣ [a1, a2] = b, [ai, b] = zi, ap
i = 1, i = 1, 2⟩ .



Our 
Contribution



Tushar Kanta Naik,  
and Manoj Kumar Yadav, 

Finite p-groups of conjugate 
type {1, },  

J. Group Theory,  
21 (1), 2018, 65-82. 

p3



Finite p-groups of conjugate type (1, p3), p > 2

If  is a finite p-group, 
, of conjugate type 

,  
then nilpotency class of 

 can not be 3.

G
p > 2

(1, p3)

G



Continue 

A Camina p-group of class 2 and center of 
order  

 

, where . 

, where , 
where  is a non-square integer modulo p.

p3 .

G3 = ⟨a1, a2, a3, a4 ∣ ap
i = [aj, ak]p = 1 = [[ai, aj], ak], 1 ≤ i, j, k ≤ 4⟩ .

G3/⟨x⟩ x = [a1, a2][a3, a4] ∈ Z(G3) = G′�3

G3/⟨x, y⟩ y = [a1, a3][a2, a4]t ∈ Z(G3) = G′�3
t

Moreover  is isoclinic to one of the following:G



Continue…

We also proved 
analogous result for the 

prime p=2.



Results till now

If  is of conjugate type  or 
, then nilpotency class of  

is 2. 

If  is of conjugate type , 
then nilpotency class of  can 
be both 2 and 3.

G (1, p)
(1, p3) G

G (1, p2)
G



A natural question

Does there exist a finite p-group 
of  

nilpotency class 3  
and  

conjugate type  
 an odd integer, and  
p an odd prime?

(1, pn),
n ≥ 5



Tushar Kanta Naik,  
Rahul Dattatraya Kitture,  
and Manoj Kumar Yadav,  

Finite p-groups of nilpotency 
class 3 with two conjugacy 

class sizes,  
Israel J. Math,  

236 (2), 2020, 899-930. 



Finite p-groups of nilpotency class 3 and  
conjugate type (1, pn), p > 2

Let  be a prime and  an integer. Then 
there exist finite p-groups of nilpotency class 3 
and conjugate type  if and only if  is an 
even integer. 

Moreover, for each even integer , every 
finite p-group of nilpotency class 3 and 
conjugate type  is isoclinic to the group 

, where  is defined as follows…

p > 2 n ≥ 1

(1, pn), n

n = 2m

(1, p2m)
Hm/Z(Hm) Hm



Continue.. 

 where a, b, c, d, e, f , 
field of  elements.

Hm =

1
a 1
c b 1
d ab − c a 1
f e c b 1

,

∈ 𝔽pm

pm



Remaining challenge (Open problem)

Classify finite p-groups  
of 

 nilpotency class 2  
and  

conjugate type (1, pn), n ≥ 4.



Analogous study  
in  

Lie algebra



Definition

Bilinearity: and  
 for all scalars , and all elements 

 

Alternativity:  for all  

Jacobi identity: , for all
. 

[ax + by, z] = a[x, z] + b[y, z], [z, ax + by]
= a[z, x] + b[z, y], a, b ∈ F

x, y, z ∈ L .

[x, x] = 0, x ∈ L .

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0
x, y, z ∈ L

A Lie algebra L is a vector space over some field F 
together with a binary operation  called 

the Lie bracket satisfying the following conditions:
[ . , . ] : L × L → L



Examples
Any vector space V can be made into a Lie algebra 
with the trivial Lie bracket defined as  for 
all  

Any associate algebra  can be made into a Lie 
algebra with the Lie bracket defined as 

 for all  

Let  be an -vector space. Then , the set of 
-linear transformation of , is a Lie algebra with 
the Lie bracket defined as , for all 

.

[x, y] = 0,
x, y ∈ L .

A

[x, y] = xy − yx, x, y ∈ L .

V F End(V) F
V
[ f, g] = f ∘ g − g ∘ f

f, g ∈ End(V)



 (nilpotent) Lie algebra  (p)-groups⟺

It is widely believed that results of finite groups that make 
sense for Lie algebras are often valid. 

More precisely, results of finite p-groups that make sense 
for finite dimensional nilpotent Lie algebras are often true. 

Recall that a p-group has non-trivial center. Similarly, the 
center of a nilpotent Lie algebra is non-trivial. 

Classification of nilpotent Lie algebras is done up to the 
dimension 7 over the field of real and complex numbers. 

Much like p-groups, classification of nilpotent Lie algebras, 
up to isomorphism, is a very difficult problem.



The analogous study in Lie algebra

There is no direct analogous of conjugacy classes in 
Lie algebra. 

But, the number of distinct conjugacy class sizes in a 
finite group  is equal to the number of different 
orders of centralizers of elements of elements in . 

This allows us to investigate the analogous case in Lie 
algebras. 

Here, we are interested in the finite-dimensional Lie 
algebras  with exactly two different dimensions of 
centralisers , as  runs over .

G
G

L
CL(x) x L



Not necessarily nilpotent

 is isomorphic to the 2-dimensional non-nilpotent Lie 
algebra, i.e., . 

 is isomorphic to  

 is isomorphic to  the Lie algebra of  complex 
matrices with trace zero and Lie bracket 

L/Z(L)
{x, y ∣ [x, y] = x}

L/Z(L) {a, x, y ∣ [a, x] = x, [a, y] = − y, [x, y] = 0} .

L/Z(L) sl2(ℂ), 2 × 2
[X, Y] = XY − YX .

Y. Barena, and I. M. Isaacs, Lie algebra with few 
centraliser dimensions, J. Algebra, 259, 284-299, 2003. 

Suppose that  is is a non-nilpotent finite dimensional Lie 
algebra over  with just two distinct centraliser dimensions. 
Then , and one of following holds.

L
ℂ

dim(L/Z(L)) ≤ 3



Bound on nilpotency class
Y. Barena, and I. M. Isaacs, Lie algebra 

with few centraliser dimensions,  
J. Algebra, 259, 284-299, 2003. 

Suppose that  is a finite dimensional 
nilpotent Lie algebra over any 
arbitrary field with just two distinct 
centraliser dimensions. Then 
nilpotency class of L is either 2 or 3.

L



Remaining challenge (Open problem)

Classify finite dimensional nilpotent Lie 
algebras of c.c.d.  

We say a Lie algebra  is of c.c.d. (0, m) 
(stands for centraliser co-dimensions),  
if co-dimensions of  is m, for all  

non-central element 

(o, m), m ≥ 1.

L

CL(x)
x ∈ L∖Z(L) .



Tentative possibility

It seems all the results which are true in 
finite p-groups of conjugate type  
will hold true for finite dimensional Lie 
algebras of c.c.d.  over finite field.  

The problem remains over arbitrary field, 
where the computational techniques used in 
finite groups can not be applied directly.

(1, pn)

(o, n)



Thank 
you


