MAT165: PROBLEMS ON NUMBER THEORY

MANJIL SAIKIA

- (1) Prove or disprove: if a|(b+c), then either a|b or a|c.
- (2) Give an example to show that $a^2 \equiv b^2 \pmod{n}$ doesn't always imply $a \equiv b \pmod{n}$.
- (3) How many zeroes does 100! end in?
- (4) Prove that if a number has an odd number of divisors, then it must be a perfect square.
- (5) Which primes are of the form $n^3 1$?
- (6) Show that $n^4 + 4$ is never a prime, when n > 1.
- (7) If $p \neq 1$ is an odd prime, then prove that either $p^2 1$ or $p^2 + 1$ is divisible by 10.
- (8) Show that there exists k consecutive composite numbers, for every integer k.
- (9) If p is a prime such that $n , then show that <math>\binom{2n}{n} \equiv 0 \pmod{p}$.
- (10) Show that $89|(2^{44}-1)$ and $97|(2^{48}-1)$.
- (11) Find the remainder when 4444 is divided by 9.
- (12) Find the last three digits of 7^{999} .
- (13) What is the last digit of $12345678910111213141516171819^5$?
- (14) Given a number n of the form p^aq^b for some primes p,q and integers a,b, how many divisors does n have?
- (15) A number consists of 100 zeroes, 100 ones, and 100 twos. Can this number be a perfect square?
- (16) Find the remainder when $1989 \cdot 1990 \cdot 1991 + 1992^3$ is divided by 7.
- (17) Prove that, for all natural numbers n, we have $5|n^5+4n$.
- (18) Given natural numbers a and b such that $21|a^2+b^2$, then show that $441|a^2+b^2$ as well.
- (19) Find the last digit of the number 1989¹⁹⁸⁹.
- (20) Prove that $7|2222^{5555} + 5555^{2222}$.
- (21) What is the remainder when 7 divides $2^{50} + 41^{65}$?
- (22) Prove that $1835^{1910} + 1986^{2061} \equiv 0 \pmod{7}$.
- (23) For all $n \ge 1$, if we have

$$\binom{2n}{n} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \times 2^{x}.$$

Then, what is the value of x?

(24) Given prime numbers p and $8p^2 + 1$, what is p?

Date: 16 November 2025.

- (25) What is the last digit of $1^2 + 2^2 + \dots 99^2$?
- (26) Prove that $31|30^{99} + 61^{100}$.
- (27) Prove that $133|11^{n+2} + 12^{2n+1}$, for any natural n.
- (28) Show that the cube of an integer is of the form 7k or $7k \pm 1$, for some $k \in \mathbb{Z}$.
- (29) Prove that if both a and b are odd integers, then $16 \mid a^4 + b^4 2$.
- (30) Prove or disprove: the sum of the squares of two odd numbers cannot be a perfect square.
- (31) Prove or disprove: the product of four consecutive integers is 1 less than a perfect square.
- (32) If gcd(a, b) = 1, then prove that $gcd(a^2, b^2) = 1$.
- (33) Verify that $2^{35} 1$ is divisible by 31 and 127.
- (34) Show that for all $n \ge 1$, the integer $5^{2n} 1$ is divisible by 24.