

## MAT165: PROBLEMS FOR PRACTICE

MANJIL SAIKIA

(1) Let  $X = \{a_1, a_2, a_3, a_4, a_5\}$  be a subset of the set of integers which are perfect squares. Show that there exists a subset  $Y$  of  $X$ , such that for  $Y = \{b_1, b_2, b_3\}$  we have  $3|(b_1 + b_2 + b_3)$ .

**Solution.** We analyze the residues of perfect squares modulo 3. For any integer  $n$ ,  $n^2 \equiv 0$  or  $1 \pmod{3}$ . Thus, every element in  $X$  is congruent to either 0 or 1 modulo 3.

We have 5 elements in  $X$ . By the Pigeonhole Principle, when distributing these 5 elements into the 2 possible residue classes (0 and 1):

- We must have at least three elements congruent to 0  $\pmod{3}$ , OR
- We must have at least three elements congruent to 1  $\pmod{3}$ .

**Case 1:** There are 3 elements  $b_1, b_2, b_3$  such that  $b_i \equiv 0 \pmod{3}$ . Then  $b_1 + b_2 + b_3 \equiv 0 + 0 + 0 \equiv 0 \pmod{3}$ .

**Case 2:** There are 3 elements  $b_1, b_2, b_3$  such that  $b_i \equiv 1 \pmod{3}$ . Then  $b_1 + b_2 + b_3 \equiv 1 + 1 + 1 \equiv 3 \equiv 0 \pmod{3}$ .

In both cases, the sum is divisible by 3. Thus, such a subset  $Y$  always exists.

(2)  $A$  is a 51 element subset of  $\{1, 2, \dots, 100\}$  such that no two numbers from  $A$  add upto 100, show that  $A$  contains a square.

**Solution.** We partition the set  $\{1, 2, \dots, 100\}$  into disjoint sets based on the condition  $x + y = 100$ :

- 49 pairs:  $\{1, 99\}, \{2, 98\}, \dots, \{49, 51\}$ .
- 2 singletons:  $\{50\}$  and  $\{100\}$  (since  $50 + 50 = 100$  requires two 50s, and 100 requires 0).

To form a subset  $A$  where no two numbers sum to 100, we can select at most 1 number from each of the 49 pairs. This gives a maximum of 49 elements. To reach the required size of 51 elements, we are forced to select the remaining available numbers: the singletons  $\{50\}$  and  $\{100\}$ .

Thus,  $100 \in A$ . Since  $100 = 10^2$ , the set  $A$  contains a perfect square.

(3) What is the maximum number of non-attacking bishops that you can place on a  $n \times n$  chessboard?

**Solution.** The maximum number is  $2n - 2$ . *Proof Sketch:* Bishops attack along diagonals. We can verify the bound by placing bishops on the outer edges of the board, excluding the two opposite corners that share a long diagonal. A valid configuration is:

$$\{(1, 1), \dots, (1, n-1)\} \cup \{(n, 1), \dots, (n, n-1)\}$$

This gives  $(n-1) + (n-1) = 2n - 2$  bishops.

(4) Suppose the vertices of a regular polygon of 20 sides are colored with 3 colours, say  $R$ ,  $B$  and  $G$  such that there are exactly 3 vertices of the colour  $R$ . Prove that there are 3 vertices of the polygon having the same colour such that they form an isosceles triangle.

**Solution.** Let the vertices be  $V$ . We are given 3 vertices colored Red ( $R$ ).

- If the 3  $R$  vertices form an isosceles triangle, we are done.
- If not, consider the remaining  $20 - 3 = 17$  vertices. These must be colored Blue ( $B$ ) or Green ( $G$ ).

By the Pigeonhole Principle, distributing 17 vertices into 2 colors implies at least one color (say  $B$ ) has  $\lceil 17/2 \rceil = 9$  vertices.

Now form four disjoint pentagons out of the 20 vertices, by PHP again, there must be one pentagon where we have at least 3 vertices of the same colour, which gives us the required isosceles triangle.

(5) Show that the numbers 1 to 81 cannot be arranged in a  $9 \times 9$  chessboard so that the product of the entries in row  $i$  equals the product of the entries in column  $j$  for some  $j$ , such that  $1 \leq j \leq 9$ .

**Solution.** Assume for contradiction that the product of Row  $i$  ( $P(R_i)$ ) equals the product of Column  $j$  ( $P(C_j)$ ). Consider the prime numbers  $p$  such that  $41 \leq p \leq 81$ . These are  $\{41, 43, 47, 53, 59, 61, 67, 71, 73, 79\}$ . There are exactly 10 such primes.

In the set  $\{1, \dots, 81\}$ , each of these primes appears exactly once (since  $2 \times 41 = 82 > 81$ ). For  $P(R_i) = P(C_j)$ , any prime factor appearing in the row product must also appear in the column product. If a large prime  $p$  is in Row  $i$ , it must be in Column  $j$  for the products to be equal. Since  $p$  appears only once on the whole board, the number containing  $p$  must be placed at the intersection  $(i, j)$ .

This logic applies to **all** such large primes present in Row  $i$ . By the Pigeonhole Principle, since there are 10 large primes and 9 rows, at least one row must contain two large primes, say  $p_1$  and  $p_2$ . For the row/column products to match, both  $p_1$  and  $p_2$  must be at the intersection cell  $(i, j)$ . This implies the number at  $(i, j)$  is a multiple of  $p_1 p_2$ . However:

$$p_1 \cdot p_2 \geq 41 \cdot 43 = 1763 > 81$$

This contradicts the fact that entries are  $\leq 81$ . Thus, such an arrangement is impossible.

(6) In a row of 35 chairs find the minimum number of chairs that must be occupied such that there are some consecutive set of 4 or more occupied chairs.

**Solution.** Let  $n = 35$ . We want to find the minimum  $k$  occupied chairs that forces a block of 4. This is equivalent to finding the maximum number of chairs we can occupy *without* creating a block of 4, then adding 1. To avoid 4 consecutive chairs, we can use a repeating pattern of 3 occupied ( $O$ ) and 1 empty ( $E$ ):  $OOOE$ .

The pattern length is 4. We fit as many patterns as possible:

$$35 = 8 \times 4 + 3$$

We can fit 8 blocks of  $OOOE$ , followed by 3 occupied chairs  $OOO$ . Max occupied without 4 consecutive:

$$8 \times 3(\text{from blocks}) + 3(\text{remainder}) = 24 + 3 = 27$$

Therefore, if we occupy  $27+1 = 28$  chairs, we are forced to have 4 consecutive occupied chairs.

(7) What is the largest number of squares on an  $8 \times 8$  board which can be coloured green so that in any tromino, at least one square is not coloured green.

**Solution.** Let Green ( $G$ ) be the colored squares and White ( $W$ ) be the uncolored. We want to maximize  $G$ , which implies minimizing  $W$  such that every tromino contains at least one  $W$ .

**Lower Bound for  $W$ :** We can tile an  $8 \times 8$  board (64 squares) with disjoint trominoes. Since  $64 = 21 \times 3 + 1$ , we can place 21 disjoint trominoes. Each must contain at least one  $W$ . Therefore, we need at least 21  $W$  squares. Max  $G = 64 - 21 = 43$ .

**Construction:** We can achieve this by leaving square  $(i, j)$  uncolored (White) if  $i + j \equiv 1 \pmod{3}$ . This ensures every horizontal tromino  $\{(i, j), (i, j + 1), (i, j + 2)\}$  and vertical tromino  $\{(i, j), (i + 1, j), (i + 2, j)\}$  contains exactly one square where the sum of indices is  $\equiv 1 \pmod{3}$ . Counting these squares yields exactly 21.

(8) In a state there are 100 cities and 4 roads lead out of every city. How many roads are there in total?

**Solution.** Let  $V$  be the number of cities and  $E$  be the number of roads. Given:  $V = 100$ , and degree of each vertex (the number of roads coming out of every city)  $\deg(v) = 4$ . Try to show the following is true

$$2E = \deg(v) \times V.$$