
MAT165: PROBLEMS FOR PRACTICE

MANJIL SAIKIA

(1) Let X = {a1, a2, a3, a4, a5} be a subset of the set of integers which are perfect squares.

Show that there exists a subset Y of X, such that for Y = {b1, b2, b3} we have 3|(b1 +
b2 + b3).

Solution. We analyze the residues of perfect squares modulo 3. For any integer n,

n2 ≡ 0 or 1 (mod 3). Thus, every element in X is congruent to either 0 or 1 modulo 3.

We have 5 elements in X. By the Pigeonhole Principle, when distributing these 5

elements into the 2 possible residue classes (0 and 1):

• We must have at least three elements congruent to 0 (mod 3), OR

• We must have at least three elements congruent to 1 (mod 3).

Case 1: There are 3 elements b1, b2, b3 such that bi ≡ 0 (mod 3). Then b1 + b2 + b3 ≡
0 + 0 + 0 ≡ 0 (mod 3).

Case 2: There are 3 elements b1, b2, b3 such that bi ≡ 1 (mod 3). Then b1 + b2 + b3 ≡
1 + 1 + 1 ≡ 3 ≡ 0 (mod 3).

In both cases, the sum is divisible by 3. Thus, such a subset Y always exists.

(2) A is a 51 element subset of {1, 2, . . . , 100} such that no two numbers from A add upto

100, show that A contains a square.

Solution. We partition the set {1, 2, . . . , 100} into disjoint sets based on the condition

x+ y = 100:

• 49 pairs: {1, 99}, {2, 98}, . . . , {49, 51}.

• 2 singletons: {50} and {100} (since 50 + 50 = 100 requires two 50s, and 100

requires 0).

To form a subset A where no two numbers sum to 100, we can select at most 1

number from each of the 49 pairs. This gives a maximum of 49 elements. To reach the

required size of 51 elements, we are forced to select the remaining available numbers:

the singletons {50} and {100}.

Thus, 100 ∈ A. Since 100 = 102, the set A contains a perfect square.

(3) What is the maximum number of non-attacking bishops that you can place on a n× n

chessboard?
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Solution. The maximum number is 2n − 2. Proof Sketch: Bishops attack along diag-

onals. We can verify the bound by placing bishops on the outer edges of the board,

excluding the two opposite corners that share a long diagonal. A valid configuration

is:

{(1, 1), . . . , (1, n− 1)} ∪ {(n, 1), . . . , (n, n− 1)}

This gives (n− 1) + (n− 1) = 2n− 2 bishops.

(4) Suppose the vertices of a regular polygon of 20 sides are colored with 3 colours, say

R,B and G such that there are exactly 3 vertices of the colour R. Prove that there

are 3 vertices of the polygon having the same colour such that they form an isoceles

triangle.

Solution. Let the vertices be V . We are given 3 vertices colored Red (R).

• If the 3 R vertices form an isosceles triangle, we are done.

• If not, consider the remaining 20 − 3 = 17 vertices. These must be colored Blue

(B) or Green (G).

By the Pigeonhole Principle, distributing 17 vertices into 2 colors implies at least one

color (say B) has ⌈17/2⌉ = 9 vertices.

Now form four disjoint pentagons out of the 20 vertices, by PHP again, there must

be one pentagon where we have at least 3 vertices of the same colour, which gives us

the required isoceles triangle.

(5) Show that the numbers 1 to 81 cannot be arranged in a 9 × 9 chessboard so that the

product of the entries in row i equals the product of the entries in column j for some

j, such that 1 ≤ j ≤ 9.

Solution. Assume for contradiction that the product of Row i (P (Ri)) equals the

product of Column j (P (Cj)). Consider the prime numbers p such that 41 ≤ p ≤ 81.

These are {41, 43, 47, 53, 59, 61, 67, 71, 73, 79}. There are exactly 10 such primes.

In the set {1, . . . , 81}, each of these primes appears exactly once (since 2 × 41 =

82 > 81). For P (Ri) = P (Cj), any prime factor appearing in the row product must also

appear in the column product. If a large prime p is in Row i, it must be in Column j for

the products to be equal. Since p appears only once on the whole board, the number

containing p must be placed at the intersection (i, j).

This logic applies to all such large primes present in Row i. By the Pigeonhole

Principle, since there are 10 large primes and 9 rows, at least one row must contain

two large primes, say p1 and p2. For the row/column products to match, both p1 and

p2 must be at the intersection cell (i, j). This implies the number at (i, j) is a multiple

of p1p2. However:

p1 · p2 ≥ 41 · 43 = 1763 > 81
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This contradicts the fact that entries are ≤ 81. Thus, such an arrangement is impossi-

ble.

(6) In a row of 35 chairs find the minimum number of chairs that must be occupied such

that there are some consecutive set of 4 or more occupied chairs.

Solution. Let n = 35. We want to find the minimum k occupied chairs that forces a

block of 4. This is equivalent to finding the maximum number of chairs we can occupy

without creating a block of 4, then adding 1. To avoid 4 consecutive chairs, we can use

a repeating pattern of 3 occupied (O) and 1 empty (E): OOOE.

The pattern length is 4. We fit as many patterns as possible:

35 = 8× 4 + 3

We can fit 8 blocks of OOOE, followed by 3 occupied chairs OOO. Max occupied

without 4 consecutive:

8× 3(from blocks) + 3(remainder) = 24 + 3 = 27

Therefore, if we occupy 27+1 = 28 chairs, we are forced to have 4 consecutive occupied

chairs.

(7) What is the largest number of squares on an 8× 8 board which can be coloured green

so that in any tromino, at least one square is not coloured green.

Solution. Let Green (G) be the colored squares and White (W ) be the uncolored. We

want to maximize G, which implies minimizing W such that every tromino contains at

least one W .

Lower Bound for W: We can tile an 8×8 board (64 squares) with disjoint trominoes.

Since 64 = 21× 3 + 1, we can place 21 disjoint trominoes. Each must contain at least

one W . Therefore, we need at least 21 W squares. Max G = 64− 21 = 43.

Construction: We can achieve this by leaving square (i, j) uncolored (White) if

i + j ≡ 1 (mod 3). This ensures every horizontal tromino {(i, j), (i, j + 1), (i, j + 2)}
and vertical tromino {(i, j), (i+ 1, j), (i+ 2, j)} contains exactly one square where the

sum of indices is ≡ 1 (mod 3). Counting these squares yields exactly 21.

(8) In a state there are 100 cities and 4 roads lead out of every city. How many roads are

there in total?

Solution. Let V be the number of cities and E be the number of roads. Given: V = 100,

and degree of each vertex (the number of roads coming out of every city) deg(v) = 4.

Try to show the following is true

2E = deg(v)× V.


