MAT215 ELEMENTARY NUMBER THEORY & CRYPTOGRAPHY ASSIGNMENT 1

MANJIL SAIKIA

Instructions.

- Due: before the lecture on 19th September 2025.
- Must be submitted as a PDF (via email) or printed/written (slide under my office door).
- Begin each solution on a new page, and use only blank or dotted pages (not ruled).
- Staple the submission, if submitting a paper version.
- State your sources at the top of each problem (even if you worked independently).
- Late penalty is 25% per late day.
- Failure to follow any of these instructions will result in 0 points.

Any letter denoting a number (such as a, b, c, n, etc.) is always considered to be an integer, unless otherwise mentioned.

Problems. All problems are mandatory.

The following problems are worth 1 point each.

- (1.1) If n > 2, prove that there exists a prime p such that n .
- (1.2) If p_i is the *i*-th prime number, then show that $p_1p_2\cdots p_n+1$ is never a perfect square.
- (1.3) If p and $p^2 + 8$ are both primes, then show that $p^3 + 4$ is also a prime.
- (1.4) Show that gcd(n! + 1, (n + 1)! + 1) = 1 for any $n \in \mathbb{Z}^+$.

The following problems are worth 2 points each.

(2.1) Show that every positive integer n can be uniquely represented in the form

$$n = n_0 + 3n_1 + 3^2n_2 + \dots + 3^tn_t$$

with $n_i \in \{0, 1, -1\}$ for $0 \le i \le t$ where $t \ge 0$ is an integer.

(2.2) Show that for every positive integers $n \geq m$,

$$\frac{\gcd(m,n)}{n} \binom{n}{m}$$

is always an integer.

- (2.3) The prime numbers p and q are called twin primes if |p-q|=2. Prove that pq+1 is a square if and only if p and q are twin primes.
- (2.4) (a) If the product of 2002 integers equals 1, can their sum be zero?
 - (b) What if you replace 2002 by any positive even integer?
- (2.5) Show that $61! + 1 \equiv 63! + 1 \equiv 0 \pmod{71}$.

Date: 13 September 2025.

- (2.6) Find the smallest positive integer n for which $2^2 \mid n$, $3^2 \mid (n+1)$, $5^2 \mid (n+2)$ and $7^2 \mid (n+3)$.
- (2.7) A basket contains n mangoes. If it is distributed among 2 people, 1 mango is left. If we distribute among 3, 5 or 7 people, we are left with 2, 4 or 6 mangoes, respectively. However we can distribute equally among 11 people. Find the smallest such n.
- (2.8) Given a positive integer N, let \overline{N} be the positive integer obtained by writing digits of N in reverse order. For example, if N=1234, then $\overline{N}=4321$ and if N=1230, then $\overline{N}=321$. Find the number of all N such that $N-\overline{N}=9$.