MAT215 ELEMENTARY NUMBER THEORY & CRYPTOGRAPHY PROBLEM SHEET 2

MANJIL SAIKIA

Any letter denoting a number (such as a, b, c, n, etc.) is always considered to be an integer, unless otherwise mentioned.

- (1) Show that the expression $\frac{(2n)!}{2^n n!} \in \mathbb{Z}$, for all $n \geq 0$.
- (2) For $2 \le k \le n-2$, show that

$$\binom{n}{k} = \binom{n-2}{k-2} + 2\binom{n-2}{k-1} + \binom{n-2}{k}, \quad n \ge 4.$$

- (3) Show that the cube of any integer is of the form 7k or $7k \pm 1$.
- (4) If n is an odd integer, show that $n^4 + 4n^2 + 11$ is of the form 16k.
- (5) For any odd integer, what is gcd(3a, 3a + 2)?
- (6) Prove that $360|a^2(a^2-1)(a^2-4)$, for any integer a.
- (7) Prove that if gcd(a, b) = 1, then gcd(a + b, ab) = 1.
- (8) Solve the Diophantine equation: 158x 57y = 7 for positive values of x and y.

1

- (9) Prove that if n > 4 is composite, then n | (n-1)!.
- (10) If $p \ge 5$ is a prime number, then show that $p^2 + 2$ is composite.
- (11) Using the theory of congruences show that $7|(5^{2n}+3\cdot 5^{2n-2})$ for all $n\geq 1$.
- (12) If p is a prime such that $n , then show that <math>\binom{2n}{n} \equiv 0 \pmod{p}$.
- (13) Show that $89|(2^{44}-1)$ and $97|(2^{48}-1)$.
- (14) Find the remainder when 4444^{4444} is divided by 9.
- (15) Find the last three digits of 7^{999} . (Hint: Look at $7^{4n} \pmod{1000}$.)
- (16) Solve: $34x \equiv 60 \pmod{98}$.
- (17) What is the last digit of 12345678910111213141516171819⁵?
- (18) Find the unit digit of 3^{100} using FLT.
- (19) Solve: $x^2 + 1 \equiv 0 \pmod{19}$.
- (20) Find one solution of $x^2 + 1 \equiv 0 \pmod{13}$.

Date: 19 September 2025.