Solving System of Simultaneous Equations using Matrices

Dr Manjil P. Saikia

IIIT Manipur

06 December 2022

System of linear equations

A System of *m* linear equations in *n* variables $x_1, x_2, ..., x_n$ is a collection of *m* equations of the following form

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$ \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.$

- The numbers a_{ij} are called the coefficients of the system of linear equations.
- We have to find to all the solutions of this system, a solution is a list of n numbers, say c₁, c₂, ..., c_n that satisfy the system of linear equations. The set of all solutions is called the solution set.

Types of systems

- A system may not have any solution, in this case we say that the system is inconsistent.
 - ► For example, the system x y = 1 and y x = 3 has no solutions in natural numbers.
- If a system has at least one solution then we say that the system is consistent.
 - ► For example, the system x y = 3 and 2x y = 7 has one solution in natural numbers, namely (x, y) = (4, 1).
- A consistent linear system will have either just one solution or infinitely many solutions.
 - For example, the system $x_1 + x_2 + x_3 = 0$ and $x_1 + 3x_2 x_3 = 3$ has infinitely many solutions. $(x_1, x_2, x_3) = (-3/2 2r, 3/2 + r, r)$ for any $r \in \mathbb{R}$.

Matrices

A matrix is an array or table consisting of rows and columns.

$$M = \left(egin{array}{cccc} 1 & 1 & 1 & 0 \ 1 & 3 & -1 & 3 \end{array}
ight)$$

If a matrix has *m* rows and *n* columns then we say that such a matrix is an $m \times n$ matrix. The matrix *M* is a 2 × 4 matrix.

A matrix containing only one column is called a **column vector** and a matrix containing only one row is called a **row vector**.

$$\left(\begin{array}{c}1\\3\end{array}\right)\quad \left(\begin{array}{cccc}1&1&1&0\end{array}\right)$$

Matrices and Systems of equations

We can associate a linear system with three matrices

- the coefficient matrix,
- the output column vector, and
- the augmented matrix.

For example, take the system

$$-3x_1 + 2x_2 + 4x_3 = 12$$

$$x_1 - 2x_3 = -4$$

$$2x_1 - 3x_2 + 4x_3 = -3.$$

Here the matrices are respectively

$$A = \begin{pmatrix} -3 & 2 & 4 \\ 1 & 0 & -2 \\ 2 & -3 & 4 \end{pmatrix}, b = \begin{pmatrix} 12 \\ -4 \\ -3 \end{pmatrix}, (A|b) = \begin{pmatrix} -3 & 2 & 4 \\ 1 & 0 & -2 \\ 2 & -3 & 4 \\ -3 \end{pmatrix}$$

Solving equations via Matrices

We can perform three basic operations, called **elementary operations** on a system of linear equations:

- interchange two equations,
- multiply an equation by a nonzero constant, and
- add a multiple of one equation to another.

These operations do not alter the solution set!

- In terms of of the augmented matrix representing the linear system we call the operations elementary row operations.
- The goal with row reducing is to transform the original linear system into one having a triangular structure and then we perform back substitution to solve the system.

An example

Let us solve the following system with the above technique:

$$x_1 + 2x_2 - 3x_3 = 2$$

 $x_2 + 2x_3 = 10$
 $x_3 = 3$

The augmented matrix is

From the last equation we get $x_3 = 3$, substituting this in the second equation we get $x_2 + 6 = 10$, giving us $x_2 = 4$. And finally, the first equation gives us $x_1 + 8 - 9 = 2$, giving us $x_1 = 3$.

Another example

Let us go back to our earlier example

$$-3x_1 + 2x_2 + 4x_3 = 12$$
$$x_1 - 2x_3 = -4$$
$$2x_1 - 3x_2 + 4x_3 = -3.$$

Here the augmented matrix is

We will now use elementary row operations to get the augmented into a triangular structure.

Row Operations

Interchange Row 1 with Row 2:

$$\left(\begin{array}{ccc|c} -3 & 2 & 4 & | & 12 \\ 1 & 0 & -2 & | & -4 \\ 2 & -3 & 4 & | & -3 \end{array} \right) \quad \rightarrow \quad \left(\begin{array}{ccc|c} 1 & 0 & -2 & | & -4 \\ -3 & 2 & 4 & | & 12 \\ 2 & -3 & 4 & | & -3 \end{array} \right)$$

Add $3 \times$ Row 1 with Row 2:

$$\begin{pmatrix} 1 & 0 & -2 & | & -4 \\ -3 & 2 & 4 & | & 12 \\ 2 & -3 & 4 & | & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & | & -4 \\ 0 & 2 & -2 & | & 0 \\ 2 & -3 & 4 & | & -3 \end{pmatrix}$$

Add $-2 \times$ Row 1 to Row 3:

$$\left(\begin{array}{ccc|c} 1 & 0 & -2 & | & -4 \\ 0 & 2 & -2 & | & 0 \\ 2 & -3 & 4 & | & -3 \end{array} \right) \quad \rightarrow \quad \left(\begin{array}{ccc|c} 1 & 0 & -2 & | & -4 \\ 0 & 2 & -2 & | & 0 \\ 0 & -3 & 8 & | & 5 \end{array} \right)$$

Example contd.

As a last step, we now multiply $\frac{3}{2} \times \text{Row } 2$ to Row 3:

$$\left(\begin{array}{cccc|c} 1 & 0 & -2 & -4 \\ 0 & 2 & -2 & 0 \\ 0 & -3 & 8 & 5 \end{array} \right) \quad \rightarrow \quad \left(\begin{array}{cccc|c} 1 & 0 & -2 & -4 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 5 & 5 \end{array} \right)$$

Our original system now becomes

$$x_1 - 2x_2 = -4$$

 $2x_2 - 2x_3 = 0$
 $5x_3 = 5$

Via back substitution we get $x_3 = 1$, $x_2 = 1$ and $x_1 = -2$.

If we obtain a row in an augmented matrix in any step which is of the form

 $(0 \quad 0 \quad \cdots \quad 0 \mid b)$

then the system is **inconsistent**.

Thank you!