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Rolle’s Theorem

Theorem (Rolle’s Theorem)
Let f : [a, b] → R be a continous function on a closed interval
and it is differentiable at any point in the open interval (a, b).
Moreover assume that f (a) = f (b) = 0. Then there exists at
least one point c ∈ (a, b) such that f ′(c) = 0.
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Proof of Rolle’s Theorem

▶ Since f (x) is continous, so by the Weirstraß Extreme Value Theorem
the function admits a maximum and a minimum.

▶ There can be two cases:
▶ Case 1: Both the maximum and minimum are attained at the

extrema of the interval.
▶ Case 2: At least one of the maximum or minimum is attained at an

internal point.
▶ Case 1: Here max(a,b) f (x) = min(a,b) f (x) = 0, and this implies that

f (x) is constant & f (x) = 0 for all x ∈ (a, b). So, f ′(x) = 0 for all
x ∈ (a, b) and the theorem is verified.

▶ Case 2: Let this point be c . Since f (x) is differentiable in (a, b), this
point has to be a stationary point and hence f ′(c) = 0.
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Let f : [a, b] → R be a continous function on a closed interval
and it is differentiable at any point in the open interval (a, b).
Moreover there exists at least two points c , d ∈ [a, b] such that
f (c) = f (d). Then there exists at least one point ξ ∈ (a, b) such
that f ′(ξ) = 0.

Geometrically, the picture is the same here!

We use this to prove Cauchy Mean Value Theorem.



Generalized Rolle’s Theorem

Theorem (Generalized Rolle’s Theorem)
Let f : [a, b] → R be a continous function on a closed interval
and it is differentiable at any point in the open interval (a, b).
Moreover there exists at least two points c , d ∈ [a, b] such that
f (c) = f (d). Then there exists at least one point ξ ∈ (a, b) such
that f ′(ξ) = 0.

Geometrically, the picture is the same here!

We use this to prove Cauchy Mean Value Theorem.



Generalized Rolle’s Theorem

Theorem (Generalized Rolle’s Theorem)
Let f : [a, b] → R be a continous function on a closed interval
and it is differentiable at any point in the open interval (a, b).
Moreover there exists at least two points c , d ∈ [a, b] such that
f (c) = f (d). Then there exists at least one point ξ ∈ (a, b) such
that f ′(ξ) = 0.

Geometrically, the picture is the same here!

We use this to prove Cauchy Mean Value Theorem.



Generalized Rolle’s Theorem

Theorem (Generalized Rolle’s Theorem)
Let f : [a, b] → R be a continous function on a closed interval
and it is differentiable at any point in the open interval (a, b).
Moreover there exists at least two points c , d ∈ [a, b] such that
f (c) = f (d). Then there exists at least one point ξ ∈ (a, b) such
that f ′(ξ) = 0.

Geometrically, the picture is the same here!

We use this to prove Cauchy Mean Value Theorem.
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Theorem (Cauchy Mean Value Theorem)
Let f : [a, b] → R and g : [a, b] → R be continous functions,
defined on the closed interval [a, b] and differentiable on the open
interval (a, b). Let g ′(x) ̸= 0 for all x ∈ (a, b). Then there exists
at least one point c ∈ (a, b) such that

f ′(c)

g ′(c)
=

f (b)− f (a)

g(b)− g(a)
.

This gives us the Mean Value Theorem when g(x) ≡ x .
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▶ We apply Rolle’s theorem to the following function

h(x) =

(
g(b)− g(a)

)
f (x)−

(
f (b)− f (a)

)
g(x).

▶ Notice h(a) = g(b)f (a)− f (b)g(a) = h(b).
▶ By the Generalized Rolle’s Theorem there exists at least one point

c ∈ (a, b) such that h′(c) = 0.
▶ This gives us (g(b)− g(a))f ′(c) = (f (b)− f (a))g ′(c).
▶ Since g ′(c) ̸= 0, this implies g(b)− g(a) ̸= 0, else if g(a) = g(b)

then by Rolle’s theorem there exists at least one c such that
g ′(c) = 0.

▶ Now dividing by g ′(c) and g(b)− g(a) gives us the result.
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L’ Hôpital’s Rule

Corollary (L’ Hôpital’s Rule)
Let f : [a, b] → R and g : [a, b] → R be continous functions
which are differentiable on the open interval (a, b). Let x0 ∈ (a, b)
and suppose that g ′(x) ̸= 0 for all x ∈ (a, b) \ {x0} and

lim
x→x0

f (x) = lim
x→x0

g(x) = 0.

If the limit of
f ′

g ′ exists at x0, then

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)

g ′(x)
.

This is a technique to evaluate limits of indeterminate forms.
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Examples of L’ Hôpital’s Rule

▶ Let f , g → R with f (x) = sin(x) and g(x) = x .

lim
x→0

sin x

x
= lim

x→0

cos x

1
= 1.

▶ The result is false if lim
x→x0

f (x) ̸= 0 or lim
x→x0

g(x) ̸= 0.

▶ For instance, f , g : [a, b] → R, f (x) = x2 + 1 and g(x) = x + 2.
Applying the rule gives us

lim
x→0

x2 + 1
x + 2

=
1
2
̸= lim

x→0

2x
1

= 2.
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Remarks

▶ Both the Rolle’s Theorem and the Mean Value Theorem are
existence results.

▶ There is a more general Cauchy Mean Value Theorem for higher
order derivatives, which again gives a higher order L’ Hôpital’s rule.



Remarks

▶ Both the Rolle’s Theorem and the Mean Value Theorem are
existence results.

▶ There is a more general Cauchy Mean Value Theorem for higher
order derivatives, which again gives a higher order L’ Hôpital’s rule.



Remarks

▶ Both the Rolle’s Theorem and the Mean Value Theorem are
existence results.

▶ There is a more general Cauchy Mean Value Theorem for higher
order derivatives, which again gives a higher order L’ Hôpital’s rule.



Thank you!


