Theorems for Differentiable Functions

Dr Manjil P. Saikia
T Manipur

January 18, 2023



Rolle's Theorem



Rolle's Theorem

Theorem (Rolle’s Theorem)

Let f : [a, b] — R be a continous function on a closed interval
and it is differentiable at any point in the open interval (a, b).
Moreover assume that f(a) = f(b) = 0. Then there exists at

least one point c € (a, b) such that f'(c) = 0.




Rolle's Theorem

Theorem (Rolle’s Theorem)

Let f : [a, b] — R be a continous function on a closed interval
and it is differentiable at any point in the open interval (a, b).
Moreover assume that f(a) = f(b) = 0. Then there exists at

least one point c € (a, b) such that f'(c) = 0.




Proof of Rolle’'s Theorem



Proof of Rolle’'s Theorem

» Since f(x) is continous, so by the Weirstral Extreme Value Theorem
the function admits a maximum and a minimum.



Proof of Rolle’'s Theorem

» Since f(x) is continous, so by the Weirstral Extreme Value Theorem
the function admits a maximum and a minimum.

» There can be two cases:



Proof of Rolle’'s Theorem

» Since f(x) is continous, so by the Weirstral Extreme Value Theorem
the function admits a maximum and a minimum.
» There can be two cases:

» (Case 1: Both the maximum and minimum are attained at the
extrema of the interval.



Proof of Rolle’'s Theorem

» Since f(x) is continous, so by the Weirstral Extreme Value Theorem
the function admits a maximum and a minimum.
» There can be two cases:
» Case 1: Both the maximum and minimum are attained at the
extrema of the interval.
» Case 2: At least one of the maximum or minimum is attained at an
internal point.



Proof of Rolle’'s Theorem

» Since f(x) is continous, so by the Weirstral Extreme Value Theorem
the function admits a maximum and a minimum.
» There can be two cases:

» (Case 1: Both the maximum and minimum are attained at the
extrema of the interval.

» Case 2: At least one of the maximum or minimum is attained at an
internal point.

» Case 1: Here max(,,p) f(x) = min(, ) f(x) =0,



Proof of Rolle’'s Theorem

» Since f(x) is continous, so by the Weirstral Extreme Value Theorem
the function admits a maximum and a minimum.
» There can be two cases:
» (Case 1: Both the maximum and minimum are attained at the
extrema of the interval.

» Case 2: At least one of the maximum or minimum is attained at an
internal point.

» Case 1: Here max(,p) f(x) = min(, ) f(x) = 0, and this implies that
f(x) is constant & f(x) = 0 for all x € (a, b).



Proof of Rolle’'s Theorem

» Since f(x) is continous, so by the Weirstral Extreme Value Theorem
the function admits a maximum and a minimum.
» There can be two cases:
» (Case 1: Both the maximum and minimum are attained at the
extrema of the interval.

» Case 2: At least one of the maximum or minimum is attained at an
internal point.

» Case 1: Here max(,p) f(x) = min(, ) f(x) = 0, and this implies that
f(x) is constant & f(x) = 0 for all x € (a, b). So, f'(x) = 0 for all
x € (a, b) and the theorem is verified.



Proof of Rolle’'s Theorem

» Since f(x) is continous, so by the Weirstral Extreme Value Theorem
the function admits a maximum and a minimum.
» There can be two cases:

» (Case 1: Both the maximum and minimum are attained at the
extrema of the interval.

» Case 2: At least one of the maximum or minimum is attained at an
internal point.

» Case 1: Here max(,p) f(x) = min(, ) f(x) = 0, and this implies that
f(x) is constant & f(x) = 0 for all x € (a, b). So, f'(x) = 0 for all
x € (a, b) and the theorem is verified.

» Case 2: Let this point be c.



Proof of Rolle’'s Theorem

» Since f(x) is continous, so by the Weirstral Extreme Value Theorem
the function admits a maximum and a minimum.
» There can be two cases:

» (Case 1: Both the maximum and minimum are attained at the
extrema of the interval.

» Case 2: At least one of the maximum or minimum is attained at an
internal point.

» Case 1: Here max(,p) f(x) = min(, ) f(x) = 0, and this implies that
f(x) is constant & f(x) = 0 for all x € (a, b). So, f'(x) = 0 for all
x € (a, b) and the theorem is verified.

» Case 2: Let this point be c. Since f(x) is differentiable in (a, b), this
point has to be a stationary point and hence f’(c) = 0.
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» his continous and differentiable at all points where f is.
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f(b)—f
» This means f'(c) = M. And the theorem is proved.
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This gives us the Mean Value Theorem when g(x) = x.
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Proof of Cauchy Mean Value Theorem

» We apply Rolle’s theorem to the following function

60 = (&(6) - £ 760~ (7(8) - 7(2) ) ()

> Notice h(a) = g(b)f(a) — f(b)g(a) = h(b).

» By the Generalized Rolle’s Theorem there exists at least one point
¢ € (a, b) such that H'(c) = 0.

> This gives us (g(b) — g(a))f'(c) = (f(b) — f(a))g’(c).

» Since g’(c) # 0, this implies g(b) — g(a) # 0, else if g(a) = g(b)
then by Rolle’s theorem there exists at least one ¢ such that
g'(c)=0.

» Now dividing by g’(c) and g(b) — g(a) gives us the result.
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This is a technique to evaluate limits of indeterminate forms.
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> Let f,g — R with f(x) =sin(x) and g(x) = x.

. sinx . COSX
lim = lim
x—=0 X x—=0 1

=1

» The result is false if lim f(x) # 0 or ILm g(x) #0.
X—>Xo X—Xo

> For instance, f,g: [a,b] = R, f(x) = x>+ 1 and g(x) = x + 2.
Applying the rule gives us
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» Both the Rolle’s Theorem and the Mean Value Theorem are
existence results.

» There is a more general Cauchy Mean Value Theorem for higher
order derivatives, which again gives a higher order L' Hépital's rule.
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