Indian Institute of Information Technology (IIIT) Manipur

End Semester Examination, February 2023

Course Title: Mathematics I
Semester: I
Date of Examination: 24 February 2023

Time: 3 hours
Total Number of Pages: 3

Part A (10 $\times 2$ marks $=20$ marks $)$

1. Given that $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right) A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$, find A^{-1}.
2. Given that $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right) A=\left(\begin{array}{ccc}23 & 0 & 0 \\ 0 & 0 & 23 \\ 0 & 23 & 0\end{array}\right)$, find the value of $\operatorname{det}(A)$.
3. Is there a matrix A for which $\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)^{T}$ is a basis for the column space and $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$ is a basis for the nullspace? If yes, what is A ? if no, why does no such A exist?
4. Find the supremum and infimum of the following set

$$
\left\{2(-1)^{n+1}+(-1)^{\frac{n(n+1)}{2}}\left(2+\frac{3}{n}\right): n \in \mathbb{N}\right\}
$$

5. Is the series $\sum_{i=1}^{\infty} \sin i$ convergent? Justify your answer.
($1+1$ marks)
6. Write the statement of Taylor's Theorem.
7. If a function f has the property that for all real numbers x, we have $3-|x| \leq f(x) \leq 3+|x|$, then from this conclude $f(x) \rightarrow$ \qquad as $x \rightarrow$ \qquad . (Fill in both the blanks for full credit.) (2 marks)
8. Evaluate $\int_{0}^{3} f(x) \mathrm{d} x$, where $f(x)= \begin{cases}x^{2}, & x<2 \\ 3 x-2, & x \geq 2 .\end{cases}$
(2 marks)
9. Find an interval $[a, b]$ on which $f(x)=x^{4}+x^{3}-x^{2}+x-2$ satisfies the hypothesis of the Rolle's theorem.
10. State the Cauchy convergence criterion and the monotone convergence theorem.
($1+1$ marks)

$$
\text { Part B }(5 \times 16 \text { marks }=80 \text { marks })
$$

11. If $f(x)=x^{2 / 3}, a=-1$ and $b=8$,
(I) Show that there is no point c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
(II) Explain why the result in part (I) does not contradict the Mean-Value Theorem.
12. (A) Given $A=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & 0 \\ -1 & -1\end{array}\right)$.
(I) Apply the Gram-Schmidt process to the columns of the matrix A in the order that they occur in the matrix. Use this to write $A=Q U$, where Q is a matrix with orthonormal columns and R is an upper triangular matrix.
(4+4 marks)
(II) Compute the matrix of the projection onto the column space of A. What is the distance of the point $(1,1,1,0)$ to this column space?
(4+4 marks)

OR

(B) Given $A=\left(\begin{array}{ccc}1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3\end{array}\right)$.
(I) Find the eigenvalues of the matrix A.
(6 marks)
(II) Diagonalize the matrix A.
13. (A) Given that $f:(a, b) \rightarrow \mathbb{R}$ is a differentiable function.
(I) Prove that $f(x)$ is increasing on (a, b) iff $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$.
(II) Prove that if $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is strictly increasing.
(III) Is the reverse implication of part (II) true? If yes, why? If no, why not?
(4 marks)

OR

(B) (I) Show that the series $\sum_{n=0}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
(II) Show that the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$ is convergent for $-1<x \leq 1$.
14. (A) (I) Given that f is continuous on $[a, b], a>0$ and differentiable on (a, b). Show that if

$$
\frac{f(a)}{a}=\frac{f(b)}{b}
$$

then there exists an $x_{0} \in(a, b)$ such that $x_{0} f^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
(II) Given that f is continuous on $[0,2]$ and twice differentiable on $(0,2)$. Show that if

$$
f(0)=0, \quad f(1)=1 \quad \text { and } \quad f(2)=2
$$

then there exists an $x_{0} \in(0,2)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
(6 marks)
(III) Given that $f: \mathbb{R} \rightarrow \mathbb{R}$ is $n+1$ times differentiable on \mathbb{R}. Prove that for every $x \in \mathbb{R}$ there is a $\theta \in(0,1)$ such that

$$
f(x)=f(0)+x f^{\prime}(x)-\frac{x^{2}}{2} f^{\prime \prime}(x)+\cdots+(-1)^{n+1} \frac{x^{n}}{n!} f^{(n)}(x)+(-1)^{n+2} \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\theta x)
$$

and

$$
\begin{aligned}
f\left(\frac{x}{1+x}\right)=f(x)-\frac{x^{2}}{1+x} f^{\prime}(x)+\cdots & +(-1)^{n} \frac{x^{2 n}}{(1+x)^{n}} \frac{f^{(n)}(x)}{n!} \\
& +(-1)^{n+1} \frac{x^{2 n+2}}{(1+x)^{n+1}} \frac{f^{(n+1)}\left(\frac{x+\theta x^{2}}{1+x}\right)}{(n+1)!}, \quad x \neq-1 .
\end{aligned}
$$

$$
(2+2 \text { marks })
$$

OR

(B) (I) Sketch the region whose area is represented by the following definite integrals, and evaluate the integral using an appropriate formula:
(a) $\int_{-1}^{2}(x+2) \mathrm{d} x$,
(b) $\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$.
(II) Find the area of the shaded region in the figure given below.
(6 marks)

15. (A) (I) Find an antiderivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(\theta)=\sin ^{4} \theta \cos ^{2} \theta$.
(II) Evaluate the integral $\int_{0}^{\pi / 2} \frac{1+\cos \theta}{3-\cos \theta} \mathrm{d} \theta$.
(III) Find the values of $\alpha \in \mathbb{R}$ for which the integral $\int_{1}^{\infty} x^{\alpha} \mathrm{d} x$ converges.

OR

(B) (I) Find the volume of the solid generated when the region enclosed by $y=\sqrt{x}, y=2$, and $x=0$ is revolved about the y-axis.
(II) Find the exact arc length of the curve $y=3 x^{3 / 2}-1$ from $x=0$ to $x=1$.

