Column Space: The column space contains all linear
combinations of the columns of the motion A.
- Donoted by C(A).
- C(A) is a subspace of R ^M(fr appropriate m).
21: m=3, n=2 unknowns

$$\begin{pmatrix} 1 & 0 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

combination of all columns.
The system A x=b is solvable iff the vector b
can be capressed as a combination of the col^{um} of A.
Then b is the column space:
- All attainable r.h.c b are all combinations of the
columns of A.
- Jher are at least three provibilities:
- u=1, v=0 = b is the 1st od ^{um}
- u=0, v=1 = b - ... 2rd ...
- u=0, v=0 = b = 0.
Geometrically, A x=b can be solved iff b lies in the
plane spanned by the col^{um} vectors.
If b lies off this plane there Ax=b has no sol^{um}.
Check: C(A) is actually a subspace of R^M.

Nullspace: The 201° of An = O also form a v.S. This V.S. is called the nullgace. Def" The nullepice of a motion A, denoted by N(A) consists of all vectors x e.t. Ax=0. Check: N(A) is a subspace of R^M. Goal: For any cystem Ar= b we want to find ((A) f N(A). All attainable r.h.s. b < All com's of Az=0. - The vectors to are in the col epice. - The vectors & one in the null yrice. Solving An= b& An=0: Thue was one est of Ar= 6 and that was $\alpha = A^{-1}b$ (we find this via elimination, not by finding A-1) If we have a rectangular matrix then that many not have a full set of private. Now we would like to ordere such a matrix to one that we can work with.

For an invertible modifix, the null space ordering
any
$$\chi = 0$$
. $(A^{-1}, A = 0)$.
The ch^{∞} space is the schole space $(An=b)$ has
 $a coll^{\infty}$ for every b .)
Quation: both happens when
 $- null space bas nore from the zero vector?
 $- col^{\infty}$ spice has less tran all vectors?
Answer: $-hyg \pi_n \in N(A)$ can be added to a
fracticular coll^{\overline} π_p . The coll^{\overline} to all linear equ
have the form $\pi = \pi_n + \pi_p$.
 $(A\pi_p = b, A\pi_n = 0 \Rightarrow A(\pi_p + \pi_n) = b$)
 $- when $C(A)$ doesn't contain every b in R^M, we need
the conditions on b that make $A\pi = b$ edivable.
Recall Echelonmetrix:
 $\begin{pmatrix} 0 & x & x & x \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0 \end{pmatrix}$
Echelon form: Echelon motions U has a "stair core
 $pustern"$
 $\begin{pmatrix} 1 & n & n & n \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 \rightarrow reduced so that \cdot become
 $f and everything above 1
 $id 0$.$$$

- When A is invertible, $R = I_{m}$. - Rx=0 has the same ent as Ux=0 which has the same est- as Az=0. We want to read of the 201 of Rx=0. $\overline{\text{For eq}} \cdot \text{Ray} \quad U = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $R = \begin{pmatrix} 130 - 1 \\ 0011 \\ 0000 \end{pmatrix} (R_1 - 3R_2)$ $R_{n} = \begin{pmatrix} 1 & 3 & 0 - 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ pivot colum pivot variables: u, w free variables : v, y To find general en for RA=0 (eq. Ax=0) awign ashibrary values to free variables. &, u+3v-y=0] =) u=-3v+y w+y=0] =) w=−y

The complete
$$RM^{\perp}$$
 is a combination of two special
 RM^{Me} :
 $\chi = \begin{pmatrix} -3v + y \\ v \\ -y \end{pmatrix} = v \begin{pmatrix} -2 \\ 1 \\ v \\ 0 \end{pmatrix} + y \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$
Special RM^{\perp} : $(-3,1,0,0)$ for $v = 1$, $y = 0$
 $(1,0,-1,1)$ for $v = 0$, $y = 1$
All other rd^{\perp} are kinear combinations of these two-
This forms the nullipace i.e. $rd^{\perp}s$ of $An=0$.
Theorem: If a matrix has more clums them rows, m7m.
Thus numb be at least $m-m$ free variables.
(Since in some can blane at most in pivok.)
Corollary: If $Ar = 0$ have nore interacts them $eq^{\perp}(n7m)$,
then it has at least one special RM^{\perp} . In purbular, two
are nore $rd^{\perp}s$ them the frivial rd^{\perp} .
 $Rd's now look at the case inter $b \neq 0$.
 $Rd's now look at the case inter $b \neq 0$.
 $Rd's now look at the case inter $b = 0$.
 $Rd's how look at grave $c = (b_1, b_2, 2b_1)$, $d_2 - 2b_1, b_3 - 2b_2 + 5b_1$
 $= L^{-1}b$ (form previous lethere)$$$$

Summary: Ret's ray elimination reduces
$$Ax = b$$
 to
 $Ux = c$ and $Rx = d$, with x pivots rows and x pivot cd^m .
The rank of there modores is then x .
The last $m-v$ rows of U & R are O, so there is a sd^m
only if the lant $m-v$ entries of c and d are also O.
The complete cd^m is $x = xp + 2n$.
 all free variables red to O.
Summary one free
variable quelt 1

_____>

_____ Ø -