direct indefindence, Basis & Dimension:
• Recall, rank was introduced at the no.of proofs in
the elimination porcess.
• There is actually a better description for rank.
Take
$$A = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{pmatrix}$$
 in scaling three are only
 $\begin{pmatrix} 1 & -1 & -3 & 3 & 2 \\ -1 & -3 & 3 & 0 \end{pmatrix}$ in scaling three are only
 $\begin{pmatrix} 1 & -1 & -3 & 3 & 0 \\ -1 & -3 & 3 & 0 \end{pmatrix}$ itsee allows which are
 $2R_1$ is algorithm of each other.
 $3C_1$ NOT all some are independent.
The scale contents the no.of independent rows in the matrix.
 $\frac{80}{4}$ is Suppore $C_1V_1 + (2V_2 + \dots + C_nV_n = 0$ only happens
when $C_1 = C_2 = \dots = C_n = 0$ for scalars C_i $(i = 1, 2, \dots, n)$
and vectors V_i $(i = 1, 2, \dots, n)$. Then, the vectors V_1, V_2, \dots, V_n
are caid to be liverily independent.
If any $C_i \neq 0$ then the vectors are linearly depended.
eq: In \mathbb{R}^3 , two vectors are independent if they do not
lie on the Cane line.
three vectors are -1 independent?
(when are the cone line.
(when are the cone for vectors?)
When are the cone for vectors?
- when $N(A) = \int_{0}^{\infty} 0$?
- The non-2ero rows of any echelon matrix V are indep.

- If we pick the pivot col " they are also independent. Defn: If a v.S. V consists of all linear combinations of N11N21..., NK, then there vectors span the space. it svery VEV is a combination of three Vi's. Def": A bais for a v.s. V is a set of vectors which are linearly independent and span the space V. eg: The co-ordinate vectors ly, l2,..., ln efen R. Is this a basis for Rn? Surtion: Is a baris mique? This For a vector VEV, there is only one way to write it as a combination of the basis vectors. Hoof: Suppose there were two such wary, Say N= Q1 N1+ ··· + 9nNn and V= byvy+ ····+ bnvn, where gvy,...,vng is a beis. Then this inmediately gives us, (a1-b1)V1+ ... + (an-bn)Vn=Q tord since the basis vectors are independent so, each 9;-b;=0. Jai=bi. A v.s. has infinitely many different haves. l'q: Whenever A is investible, its une independent and they are a benis for RM.

For a celebr motion say
$$U = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 an ency
three for a box's are the pirot $U = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 def^{m} . The wood determinants in a basis of a visite called the
dimension of the visit.
This def^m has actually accured the following theorem.
Theorem: If $V_{11}V_{21}...,V_{11}$ and $W_{11}W_{21}...,W_{11}$ are both bases
for the same visit, V, then $N = M$.
 $Me \ can write \ W_{1} = a_{11}V_{1} + \dots + a_{1n1}V_{1n}$
 $W_{1} = a_{12}V_{1} + \dots + a_{1n2}V_{1n}$
 $W_{2} = a_{22}V_{1} + \dots + a_{2n2}V_{1n}$
 $H = a_{1n}V_{2} + \dots + a_{2n2}V_{1n}$
 $W = VA$ where $W = (W_{11}W_{2} - \dots + W_{1n})$
 $A = (a_{1j})_{i=1,2,...,m}$
 $A = (a_{1j})_{i=1,2,...,m}$
A is of order/size $w_{2} \times w_{1n}$ with $w_{2} \times w_{1n}$.
By one previous kettue we raw know that $A_{21} = 0$ has a $w_{1} - 2ew \ sf^{m}$.

⇒ VAX=0 ⇒ WX=0 ~ A combination of the basis
cleanets giving ve 0.
(A contradiction)
If upper just reverse the role of V and W. J.
Corollary: In a subspace of dimension k, no set of more
Than k vectors can be independent and/or can spen the spece.
Any linearly independent set in a v.s. V can be extended
to a basis by adding more vectors if necessary.
A basis is a maximal independent set .
Any spanning set in V can be reduced to a basis, bug
discarding vectors if necessary.
A basis is a minimal spanning set .
Ex: Find a basis for N(A) and dim N(A) when

$$A = \begin{pmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{pmatrix}$$
Sol¹¹: By dyⁿ, N(A) is the sol²¹ set of AX=0.
From A by zoro reduction use clotain,

$$R = \begin{pmatrix} 1 & 0 & 6 & 5 \\ 0 & 1 & 5/2 & 3/2 \\ 0 & 0 & 0 \end{pmatrix}$$
protective.

The genued edth for
$$R\pi = 0$$
 is $R \cdot \begin{pmatrix} u \\ y \\ y \end{pmatrix} = 0$ is
then $u + 6w + 5y = 0$
 $v + 5/2w + 3/2y = 0$ \Rightarrow $u = -6w - 5y$
 $v = -7/2w - 3/2y$
So, $\pi = \begin{pmatrix} -6 \\ -5/2 \\ 1 \\ 0 \end{pmatrix} w + \begin{pmatrix} -5 \\ -3/2 \\ 0 \\ 1 \end{pmatrix} y$
The vectors $v_1 \notin v_2$ expan $N(A)$. They are lineally
indep.
So, Davis = $\int v_{11}v_2 f$, dim $N(A) = 2 \cdot N$
In guesd the dimension of $N(A)$ is the no. of free
presenter / variables in the col²⁴ set of $Ax = 0$.
is $dm N(A) = d = n - 7ank(A)$.
Existing $A = \begin{pmatrix} 1 & 2 & 3 - 4 & 8 \\ 1 & 2 & 0 & 2 & 8 \\ 2 & 4 & -3 & 10 & 9 \\ 3 & 6 & 0 & 6 & 9 \end{pmatrix}$. Find a basis for $C(A)$ and
 $dim C(A)$.

 $\mathcal{L}d \stackrel{\sim}{=} d \stackrel{\sim}{\mathcal{A}} \stackrel{\sim}{\mathcal{K}} et \mathcal{A} = (V_1 \ V_2 \ V_3 \ V_4 \ V_7)$ $V_1''s are col^{kr}.$ We can now use trial and easor to find the largest

Subset of
$$CA^{\pm}$$
 of A that we linearly independent.
Eq. First we check if $\int v_{11}v_2 f$ is independent.
- if you then check if $\int v_{11}v_2 v_3 f$ is indep.
- if we then discard v_2 and check if $\int v_{11}v_2 f$.
Centimue doing this until we exhaut all peribilite.
But There is a easir way. We find the TWO ordered
echelon form R of A.
 $R = \begin{pmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $1 \\ C_2 = 2C_1, C_4 = 2C_1 - 2C_3$
Thue relations also hold for A.
 $\Rightarrow C(A) = Apon \int v_{11}v_2, v_5 f$ and dim $C(A) = 3$.
The dom $C(A)$ is the rank of A.
The dom $C(A)$ is alled the nullity of A.
The dom $N(A)$ is called the nullity of A.
The dom $N(A)$ is called the nullity of A.
The off copies is also called the range of the rows of A.
 $C(A) = rows fA$ is $C(A^T)$ is sponed by the rows of A.
 $C(A^T) = rows fA$.

The left nulspace of A is N(AT). It contains all veetons y R.t. A' y = 0. The nullspree N(A) and now spree C(AT) are subspres of Rm The left null cpue N(AT) and Col. spree C(A) are Subspeces of RM. (A 'es an m×n matoix', m cot and n some.). The rank of a matrix also says something about the inverses. Say we have an man matrix, A. Then $\operatorname{rank}(A) \leq m$, $\operatorname{rank}(A) \leq n$. If ranke (A) = in them a right-inverse of A exists. If rank (A)=n - - - boff - - -Only a Rq. matrix has both left of right inverses. Rank-Nullity Theorem: Let A he an mxn matrix. The folloning egn Borde: n = rank (A) + nullity (A). Proof: A basis for C(A) can be computed by finding r.r.e.f. R. If r is the no.of leading ones in K then, r= romle (A). Let d = n-r, thin the no. free parameters in the sol" set of An=O is d and so a basis for N(A)

contains d vector.
Thue, nullity
$$(A) = n - v = n - vank (A)$$
.
Ex: Find the rank f welling $f A = \begin{pmatrix} 1 - 2 & 2 & 3 - 6 \\ 0 & -1 & -3 & 1 & 1 \\ 2 & 4 & -3 - 6 & 11 \end{pmatrix}$
Solf: $A \xrightarrow{2R_1+R_2} \begin{pmatrix} 1 - 2 & 2 & 36 \\ 0 - 1 - 3 & 1 & 1 \\ 0 & 0 & 1 & 0 - 1 \end{pmatrix}$
Thus are $\tau = 3$ leading entries, so τ only $(A) = 3$.
Wellity $(A) = n - vank(A) = S - 3 = 2$.
Theorem: Let A be an $n \times n$ matrix. The fillming
statements are equivalent:
(i) the col²² of A form a basis for R^{h}
(ii) $rank(A) = n$
(iii) $rank(A) = n$
(iv) $N(A) = f_0 f_1$
(V) multity $(A) = 0$
(V) multity $(A) = 0$
(V) multity $(A) = 0$
(V) h is an invertible matrix.
Proof: Just versions thes leadure f the previous leadure