1. Define Basis and Dimension of a vector spaces.
2. Show that the sequence defined recursively as $a_{1}=0, a_{2}=\frac{1}{2}, a_{n+1}=\frac{1}{3}\left(1+a_{n}+a_{n-1}^{3}\right)$ for $n>1$ converges and find its limit.
3. Find $\lim _{x \rightarrow 0} \operatorname{In}(1+x) / x$.
4. Prove that if f is continuous on a closed interval $[a, b]$ differentiable on the open interval (a, b) and if $f(a)=f(b)=0$ then for a real number c, there is an x in (a, b) such that $c f(x)+f^{\prime}(x)=0$.
5. Give an example of a function which is not integrable and prove that it is not integrable.
6. Determine all values of k for which the following matrices are linearly independent

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & \mathrm{k}
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
\mathrm{k} & 1
\end{array}\right],\left[\begin{array}{cc}
2 & 0 \\
1 & 3
\end{array}\right] .
$$

7. Test if $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$ are similar matrices.
8. Find the values of x, if any, at which f is not continuous
a. $f(x)=5 x^{4}-3 x+7$
ii. $f(x)=\frac{x}{2 x^{2}+x}$
9. Find the Maclaurin series for $\frac{1}{1-x}$.
10. If $f(x)=x^{2 / 3}, a=-1$ and $b=8$.
a. Show that there is no point c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
b. Explain why the result in part (i) does not contradict the Mean-Value Theorem.
