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Part A (10× 2 marks = 20 marks)

1. Given that

1 2 3

2 5 3

1 0 8

A =

0 1 0

0 0 1

1 0 0

, find A−1.

Solution. Let B =

1 2 3

2 5 3

1 0 8

 and P =

0 1 0

0 0 1

1 0 0

. We note that P−1 = PT . (1)

Multiply each side by P−1 to get the following P−1BA = I. So A−1 = P−1B =

1 0 8

1 2 3

2 5 3

. (1)

2. Given that

1 2 3

2 5 3

1 0 8

A =

23 0 0

0 0 23

0 23 0

, find the value of det(A).

Solution. Let B =

1 2 3

2 5 3

1 0 8

 and P =

23 0 0

0 0 23

0 23 0

, then det(B) · det(A) = det(P ). (1)

After calculating we get det(B) = −1 and det(P ) = −233, so det(A) = 233. (1)

3. Is there a matrix A for which (1 2 1)T is a basis for the column space and (1 1 1)T is a basis for

the nullspace? If yes, what is A? if no, why does no such A exist?

Solution. No. (1)

Let m = n = 3, then A is an m × n matrix. Let the dimension of the column space be r, then the

dimension of the nullspace is n− r. Here we are given r = 1 and n− r = 1 which is not correct by the

rank-nullity theorem. (1)

4. Find the supremum and infimum of the following set{
2(−1)n+1 + (−1)

n(n+1)
2

(
2 +

3

n

)
: n ∈ N

}
.



Solution. The set can be written as{
−2,−11

2
, 5

}
∪
{

3

4k
,− 3

4k + 1
,−4− 3

4k + 2
, 4 +

3

4k + 2
: k ∈ N

}
.

The supremum is 5. (1)

The infimum is −11

2
. (1)

5. Is the series
∞∑
i=1

sin i convergent? Justify your answer.

Solution. No. (1)

sin(n) > 0.1 for infinitely many n and sin(n) < −0.1 for infinitely many n, so the terms do not go to

any limit. (1)

6. Write the statement of Taylor’s Theorem.

Solution. Let f : (a, b) → R be a n + 1 times differentiable function and x0, x ∈ (a, b). Then there

exists a point ξ, such that x < ξ < x0, such that

f(x) = Pn(x;x0) +
(x− x0)

n+1

(n+ 1)!
f (n+1)(ξ),

where Pn(x;x0) is the Taylor polynomial of order n about the point x0 of the function f . (2)

(No part marks for this question.)

7. If a function f has the property that for all real numbers x, we have 3 − |x| ≤ f(x) ≤ 3 + |x|, then
from this conclude f(x) → as x → .

Solution. f(x) → 3 as x → 0 by Squeeze theorem. (2)

(No part marks for this question.)

8. Evaluate
3∫
0

f(x)dx, where f(x) =

x2, x < 2

3x− 2, x ≥ 2.

Solution. We have
3∫
0

f(x)dx =
2∫
0

x2dx+
3∫
2

(3x− 2)dx. (1)

Evaluating this we obtain

[
x3

3

]2
0

+

[
3x2

2
− 2x

]3
2

=
49

6
. (1)

9. Find an interval [a, b] on which f(x) = x4 + x3 − x2 + x − 2 satisfies the hypothesis of the Rolle’s

theorem.

Solution. Since the function is a polynomial so it is continuous and differentiable on the appropriate

sets. We need to check for which values of a and b we have f(a) = f(b) = 0. (1)

Solving x4 + x3 − x2 + x− 2 = 0 we obtain as real roots x = 1 and x = −2. So a = −2 and b = 1. (1)

10. State the Cauchy convergence criterion and the monotone convergence theorem.

Solution. Cauchy convergence criterion states that, a sequence is convergent if and only if it is a

Cauchy sequence. (1)

Monotone convergence theorem states that, if a sequence is monotone and bounded then it converges.

(1)
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