- The number in the brackets indicate the marks to be awarded for completing that particular step in the solution.
- The solutions are indicative only, we will accept other valid solutions as well.
- All steps are not shown here but it is expected that the student will carry out all steps for full credit.

Part B $(5 \times 16$ marks $=80$ marks $)$
11. If $f(x)=x^{2 / 3}, a=-1$ and $b=8$,
(I) Show that there is no point c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Solution. We have $f^{\prime}(x)=\frac{2}{3 x^{1 / 3}}$.
And, $\frac{f(b)-f(a)}{b-a}=\frac{1}{3}$.
If there exists a $c \in(-1,8)$ such that $f^{\prime}(c)=\frac{2}{3 c^{1 / 3}}=\frac{1}{3}$ then c must necessarily be equal to 8 which is not in the interval $(-1,8)$. Hence no such c exists.
(II) Explain why the result in part (I) does not contradict the Mean-Value Theorem.

Solution. The prerequisites of the MVT is that the function f is continuous on the closed interval $[a, b]$, and differentiable on the open interval (a, b).
Here the function is not differentiable at $x=0$.
We can prove this fact by using the limit definition of derivatives. (Proof omitted here, but proof is required for full credit in the exam.)
12. (A) Given $A=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & 0 \\ -1 & -1\end{array}\right)$.
(I) Apply the Gram-Schmidt process to the columns of the matrix A in the order that they occur in the matrix. Use this to write $A=Q U$, where Q is a matrix with orthonormal columns and R is an upper triangular matrix.
Solution. We set $q_{1}=a_{1}=(1,0,0,-1)$.
$q_{2}=a_{2}-\frac{\left(q_{2} \cdot q_{1}\right)}{\left(q_{1} \cdot q_{1}\right)} q_{1}=(-1 / 2,1,0,-1 / 2)$.
We normalize $q_{1}=(1 / \sqrt{2}, 0,0,-1 / \sqrt{2})$ and $q_{2}=(-1 / \sqrt{6}, 2 / \sqrt{6} .0,-1 / \sqrt{6})$.

Set $Q=\left[q_{1}, q_{2}\right]$.
Set $R=Q^{T} A$ to get $A=Q R=\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{6} \\ 0 & 2 / \sqrt{6} \\ 0 & 0 \\ -1 \sqrt{2} & -1 \sqrt{6}\end{array}\right)\left(\begin{array}{cc}\sqrt{2} & 1 / \sqrt{2} \\ 0 & 3 / \sqrt{6}\end{array}\right)$.
(II) Compute the matrix of the projection onto the column space of A. What is the distance of the point $(1,1,1,0)$ to this column space?
Solution. The required matrix is $P=Q Q^{T}$.
After calculating we obtain $P=\left(\begin{array}{cccc}2 / 3 & -1 / 3 & 0 & -1 / 3 \\ -1 / 3 & 2 / 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 / 3 & -1 / 3 & 0 & 2 / 3\end{array}\right)$.
If $b=(1,1,1,0)$ then its projection is $p=P b=(1 / 3,1 / 3,0,-2 / 3)$.
The required distance is then the length of $b-p$, which is $\sqrt{21} / 3$.

OR

(B) Given $A=\left(\begin{array}{ccc}1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3\end{array}\right)$.
(I) Find the eigenvalues of the matrix A.

Solution. To find the eigenvalue we need to solve the equation $\operatorname{det}(A-\lambda I)=0$ for λ.
The equation we obtain is $-\lambda^{3}+2 \lambda^{2}-\lambda=0$.
Solving this we obtain the following eigenvalues: $1,1,0$.
(II) Diagonalize the matrix A.
(10 marks)
Solution. We obtain the following $A=P B P^{-1}$, where

$$
P=\left(\begin{array}{ccc}
2 & 0 & 1 \\
-1 & -2 & 0 \\
2 & 3 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(Getting these matrices would fetch 5 marks and the derivation of the process would fetch another 5 marks.)
13. (A) Given that $f:(a, b) \rightarrow \mathbb{R}$ is a differentiable function.
(I) Prove that $f(x)$ is increasing on (a, b) iff $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$.

Solution. If f is monotone increasing then by definition $f(x) \leq f(y)$ if $x \leq y$ while $f(x) \geq$ $f(y)$ if $x \geq y$. Then for increasing functions the Newton-Quotient is always non-negative so the derivative is always non-negative as it is the limit of a non-negative function.
Conversely, since $f(x)$ is differentiable we can apply the MVT: given two points $x_{1}<x_{2}$ in (a, b) we look at $\left(x_{1}, x_{2}\right)$. By the MVT we have some point $x_{0} \in\left(x_{1}, x_{2}\right)$ such that

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \tag{2}
\end{equation*}
$$

Since the derivative is non-negative we get

$$
\begin{equation*}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}\left(x_{0}\right) \geq 0 \tag{2}
\end{equation*}
$$

which implies $f\left(x_{2}\right) \geq f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$.
(II) Prove that if $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is strictly increasing.

Solution. We assume $f^{\prime}(x)>0$, that is

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}>0
$$

Then, there exists an interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ for some $\delta>0$ such that $\frac{f(x)-f\left(x_{0}\right.}{x-x_{0}}>0$. This implies that $f(x)$ is monotone increasing in the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$.
Since this is true at any point $x_{0} \in(a, b)$, we take the union of all the intervals $\left(x_{0}-\delta, x_{0}+\delta\right)$ to conclude that $f(x)$ is monotone strictly increasing in the whole domain.
(III) Is the reverse implication of part (II) true? If yes, why? If no, why not?

Solution. No.
Consider the example $f(x)=x^{3}$.
This function is strictly increasing and differentiable on \mathbb{R} but $f^{\prime}(0)=0$.

OR

(B) (I) Show that the series $\sum_{n=0}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.

Solution. Let us denote the partial sums by

$$
\begin{equation*}
A_{n, p}:=1+\frac{1}{2^{p}}+\cdots+\frac{1}{n^{p}} \tag{1}
\end{equation*}
$$

The series converges/diverges if the sequence of partial sums converges/diverges.
Clearly for $p=1,\left(A_{n, 1}\right)$ is a monotonically increasing sequence.
Also for $n \in \mathbb{N}$ we have

$$
\begin{align*}
A_{2^{n}} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\cdots+\left(\frac{1}{2^{n-1}+1}+\cdots+\frac{1}{2^{n}}\right) \\
& \geq 1+\frac{1}{2}+\frac{2}{4}+\cdots+\frac{2^{n-1}}{2^{n}} \\
& =1+\frac{n}{2} \tag{1}
\end{align*}
$$

This shows that $\left(A_{n, 1}\right)$ is not bounded above and hence is not convergent.
For $p=2$ we have

$$
\begin{aligned}
A_{n, 2} & \leq 1+\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) \cdot n} \\
& =1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& =2-\frac{1}{n}<2
\end{aligned}
$$

Thus $\left(A_{n, 2}\right)$ is bounded above and is convergent.
For any p we have that $\left(A_{n, p}\right)$ is monotonically increasing. Since for $p=1$ the sequence is divergent, so the given series is divergent for $p \leq 1$ since

$$
\begin{equation*}
0<\frac{1}{n} \leq \frac{1}{n^{p}} \quad \text { if } \quad p \leq 1 \tag{2}
\end{equation*}
$$

Again since the sequence is convergent for $p=2$ then given series is convergent for $p \geq 2$ since we have

$$
\begin{equation*}
0<\frac{1}{n^{p}} \leq \frac{1}{n^{2}} \quad \text { if } \quad p \geq 2 \tag{2}
\end{equation*}
$$

(II) Show that the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$ is convergent for $-1<x \leq 1$.

Solution. We apply the ratio test here.
Define $L:=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2} x^{n+1} /(n+1)}{(-1)^{n+1} x^{n} / n}\right|$.
Calculate L.
Conclude based on L that the series converges for $|x|<1, x \neq-1$.
Justify why the series does not converge when $x=-1$.
14. (A) (I) Given that f is continuous on $[a, b], a>0$ and differentiable on (a, b). Show that if

$$
\frac{f(a)}{a}=\frac{f(b)}{b}
$$

then there exists an $x_{0} \in(a, b)$ such that $x_{0} f^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
Solution. We need to apply Rolle's Theorem to the function $h(x)=\frac{f(x)}{x}, x \in[a, b]$.
(Identifying the correct function fetches 2 marks and the rest of the derivation fetches 4 marks.)
(II) Given that f is continuous on $[0,2]$ and twice differentiable on $(0,2)$. Show that if

$$
f(0)=0, \quad f(1)=1 \quad \text { and } \quad f(2)=2
$$

then there exists an $x_{0} \in(0,2)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
Solution. From the MVT, there exists some $x_{1} \in(0,1)$ and $x_{2} \in(1,2)$ such that

$$
f^{\prime}\left(x_{1}\right)=f(1)-f(0)=1 \quad \text { and } \quad f^{\prime}\left(x_{2}\right)=f(2)-f(1)=1
$$

Now we apply Rolle's Theorem to f^{\prime} on $\left[x_{1}, x_{2}\right]$.
(III) Given that $f: \mathbb{R} \rightarrow \mathbb{R}$ is $n+1$ times differentiable on \mathbb{R}. Prove that for every $x \in \mathbb{R}$ there is a $\theta \in(0,1)$ such that

$$
f(x)=f(0)+x f^{\prime}(x)-\frac{x^{2}}{2} f^{\prime \prime}(x)+\cdots+(-1)^{n+1} \frac{x^{n}}{n!} f^{(n)}(x)+(-1)^{n+2} \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\theta x)
$$

and

$$
\begin{aligned}
f\left(\frac{x}{1+x}\right)=f(x)-\frac{x^{2}}{1+x} f^{\prime}(x)+\cdots & +(-1)^{n} \frac{x^{2 n}}{(1+x)^{n}} \frac{f^{(n)}(x)}{n!} \\
& +(-1)^{n+1} \frac{x^{2 n+2}}{(1+x)^{n+1}} \frac{f^{(n+1)}\left(\frac{x+\theta x^{2}}{1+x}\right)}{(n+1)!}, \quad x \neq-1
\end{aligned}
$$

Solution. By Taylor's theorem we have
(1)

$$
\begin{equation*}
f(0)=f(x+(-x))=f(x)+\frac{f^{\prime}(x)}{1!}(-x)+\cdots+\frac{f^{(n)}(x)}{n!}(-x)^{n}+\frac{f^{(n+1)}\left(x-x_{0}\right.}{(n+1)!}(-x)^{n+1} . \tag{1}
\end{equation*}
$$

Now take x_{0} such that $\theta=1-\frac{x_{0}}{x}$.
For the next part, observe $f\left(\frac{x}{1+x}\right)=f\left(x-\frac{x^{2}}{1+x}\right)$.
Now proceed like before.

OR

(B) (I) Sketch the region whose area is represented by the following definite integrals, and evaluate the integral using an appropriate formula:
(a) $\int_{-1}^{2}(x+2) \mathrm{d} x$,

Solution. The region is the one bounded by the lines in red, blue, green and the x-axis as shown below:

We have

$$
\begin{equation*}
\int_{-1}^{2}(x+2) \mathrm{d} x=\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{2}=\frac{15}{2} \tag{2.5}
\end{equation*}
$$

(b) $\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$.

Solution. The region is the one bounded by the curve in red, the lines in blue, green and the x-axis as shown below:

We have

$$
\begin{equation*}
\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x=\frac{1}{2}\left[x \sqrt{1-x^{2}}+\arcsin (x)\right]_{0}^{1}=\frac{\pi}{4} \tag{2.5}
\end{equation*}
$$

(II) Find the area of the shaded region in the figure given below.

Solution. The required area is

$$
\begin{equation*}
\int_{0}^{2}\left\{\left(2-y^{2}\right)+y\right\} \mathrm{d} y \tag{2}
\end{equation*}
$$

The value of the integral is

$$
\left[2 y-\frac{y^{3}}{3}+\frac{y^{2}}{2}\right]_{0}^{2}
$$

So, the required area is $\frac{10}{3}$.
15. (A) (I) Find an antiderivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(\theta)=\sin ^{4} \theta \cos ^{2} \theta$.

Solution. We have for any $a \in \mathbb{R}$,

$$
\begin{equation*}
\int_{a}^{x} \sin ^{4} \theta \cos ^{2} \theta \mathrm{~d} \theta=\frac{1}{2} \int_{a}^{x}\left(1-\cos (2 \theta)\left(\frac{1}{2} \sin (2 \theta)\right)^{2} \mathrm{~d} \theta\right. \tag{1}
\end{equation*}
$$

Simplifying further we eventually obtain

$$
\begin{equation*}
\int_{a}^{x} \sin ^{4} \theta \cos ^{2} \theta \mathrm{~d} \theta=\frac{1}{8} \int_{a}^{x} \frac{1}{2}\left(1-\cos (4 \theta) \mathrm{d} \theta-\int_{a}^{x} \sin ^{2}(2 \theta) \cos (2 \theta) \mathrm{d} \theta\right. \tag{1}
\end{equation*}
$$

For the second integral we use the substitution $u=\sin (2 \theta)$ so that $u^{\prime}(\theta)=2 \cos (2 \theta)$ and $\cos (2 \theta) \mathrm{d} \theta=\frac{1}{2} \mathrm{~d} u$.
Using this substitution we will obtain

$$
\begin{align*}
\int_{a}^{x} \sin ^{4} \theta \cos ^{2} \theta \mathrm{~d} \theta= & \frac{1}{8}\left[\frac{1}{2} \theta-\frac{1}{8} \sin (4 \theta)\right]_{a}^{x}-\frac{1}{16}\left[\frac{u^{3}}{3}\right]_{\sin (2 a)}^{\sin (2 x)} \tag{1}\\
& =\frac{1}{16} x-\frac{1}{64} \sin (4 x)-\frac{1}{16} a+\frac{1}{64} \sin (4 a)-\frac{1}{48} \sin ^{3}(2 x)+\frac{1}{48} \sin ^{3}(2 a)
\end{align*}
$$

and an antiderivative $F: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
F(\theta)=\frac{1}{16} \theta-\frac{1}{64} \sin (4 \theta)-\frac{1}{48} \sin ^{3}(2 \theta) \tag{1}
\end{equation*}
$$

(Note that the final expression can be written in many different ways using double-angle formulas, we will accept all valid solutions.)
(II) Evaluate the integral $\int_{0}^{\pi / 2} \frac{1+\cos \theta}{3-\cos \theta} \mathrm{d} \theta$.

Solution. (Each line of simplification is worth 1 mark in this solution.)

$$
\begin{aligned}
\int_{0}^{\pi / 2} \frac{1+\cos \theta}{3-\cos \theta} \mathrm{d} \theta & =\int_{u(0}^{u(\pi / 2)} \frac{1+\frac{1-u^{2}}{1+u^{2}}}{3-\frac{1-u^{2}}{1+u^{2}}} \cdot \frac{2}{1+u^{2}} \mathrm{~d} u \\
& =2 \int_{\tan 0}^{\tan (\pi / 4)} \frac{1}{1+2 u^{2}} \cdot \frac{1}{1+u^{2}} \mathrm{~d} u \\
& =4 \int_{0}^{1} \frac{1}{1+2 u^{2}} \mathrm{~d} u-2 \int_{0}^{1} \frac{1}{1+u^{2}} \mathrm{~d} u \\
& =\frac{4}{\sqrt{2}}[\arctan (\sqrt{2} u)]_{0}^{1}-2[\arctan u]_{0}^{1} \\
& =\frac{4}{\sqrt{ } t 2} \arctan \sqrt{2}-\frac{\pi}{2}
\end{aligned}
$$

(III) Find the values of $\alpha \in \mathbb{R}$ for which the integral $\int_{1}^{\infty} x^{\alpha} \mathrm{d} x$ converges.

Solution. Let $\alpha \neq-1$, then

$$
\begin{equation*}
\int_{1}^{\infty} x^{\alpha} \mathrm{d} x=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{\alpha} \mathrm{d} x=\lim _{b \rightarrow \infty}\left[\frac{x^{\alpha+1}}{\alpha+1}\right]_{1}^{b}=\frac{1}{\alpha+1} \lim _{b \rightarrow \infty}\left(b^{\alpha+1}-1\right) \tag{1}
\end{equation*}
$$

Now $\lim _{b \rightarrow \infty} b^{\alpha+1}=+\infty$ for $\alpha+1>0$, so $\lim _{b \rightarrow \infty}\left(b^{\alpha+1}-1\right)=+\infty$.
For $\alpha<-1$ we have negative power of b hence $\lim _{b \rightarrow \infty} b^{\alpha+1}=0$.

For $\alpha=-1$ we have

$$
\begin{equation*}
\int_{1}^{\infty} \frac{1}{x} \mathrm{~d} x=\lim _{b \rightarrow 1} \int_{1}^{x} \frac{1}{x} \mathrm{~d} x=\lim _{b \rightarrow \infty} \ln b=\infty \tag{1}
\end{equation*}
$$

So we get that the integral converges if and only if $\alpha<-1$ and the value of the integral is then

$$
\begin{equation*}
\int_{1}^{\infty} x^{\alpha} \mathrm{d} x=\frac{1}{\alpha+1} \lim _{b \rightarrow \infty}\left(b^{\alpha+1}-1\right)=\frac{1}{\alpha+1}(-1)=-\frac{1}{\alpha+1} \tag{2}
\end{equation*}
$$

OR

(B) (I) Find the volume of the solid generated when the region enclosed by $y=\sqrt{x}, y=2$, and $x=0$ is revolved about the y-axis.
Solution. The required volume is given by the integral $\int_{0}^{2} \pi[u(y)]^{2} \mathrm{~d} y=\int_{0}^{2} \pi y^{4} \mathrm{~d} y=\frac{32 \pi}{5}$ sq. units. (Identifying the integral correctly will fetch 4 marks. And, then correctly evaluating this integral would fetch another 4 marks.)
(II) Find the exact arc length of the curve $y=3 x^{3 / 2}-1$ from $x=0$ to $x=1$.

Solution. The exact arc-length of $f(x)$ between a and b is given by $\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x$.
We have $y=3 x^{3 / 2}-1$, so $y^{\prime}=\frac{9}{2} x^{1 / 2}$.
Substituting this with $a=0$ and $b=1$ in the formula, we obtain

$$
\begin{equation*}
\int_{0}^{1} \sqrt{1+\left(\frac{9}{2} x^{1 / 2}\right)^{2}} \mathrm{~d} x=\frac{1}{2} \int_{0}^{1} \sqrt{81 x+4} \mathrm{~d} x \tag{2}
\end{equation*}
$$

Now we substitute $81 x+4=u^{2}$ to get $\mathrm{d} x=\frac{2}{81} u \mathrm{~d} u$ and the integral becomes

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{1} \sqrt{u^{2}} \cdot \frac{2}{81} u \mathrm{~d} u \tag{2}
\end{equation*}
$$

Evaluating this integral we obtain the arc length to be $\frac{1}{243}$.

