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Part B (5× 16 marks = 80 marks)

11. If f(x) = x2/3, a = −1 and b = 8,

(I) Show that there is no point c in (a, b) such that f ′(c) =
f(b)− f(a)

b− a
.

Solution. We have f ′(x) =
2

3x1/3
. (2)

And,
f(b)− f(a)

b− a
=

1

3
. (2)

If there exists a c ∈ (−1, 8) such that f ′(c) =
2

3c1/3
=

1

3
then c must necessarily be equal to 8

which is not in the interval (−1, 8). Hence no such c exists. (4)

(II) Explain why the result in part (I) does not contradict the Mean-Value Theorem.

Solution. The prerequisites of the MVT is that the function f is continuous on the closed interval

[a, b], and differentiable on the open interval (a, b). (2)

Here the function is not differentiable at x = 0. (2)

We can prove this fact by using the limit definition of derivatives. (Proof omitted here, but

proof is required for full credit in the exam.) (4)

12. (A) Given A =


1 0

0 1

0 0

−1 −1

.

(I) Apply the Gram-Schmidt process to the columns of the matrix A in the order that they occur

in the matrix. Use this to write A = QU , where Q is a matrix with orthonormal columns

and R is an upper triangular matrix. (4+4 marks)

Solution. We set q1 = a1 = (1, 0, 0,−1). (1)

q2 = a2 −
(q2 · q1)
(q1 · q1)

q1 = (−1/2, 1, 0,−1/2). (3)

We normalize q1 = (1/
√
2, 0, 0,−1/

√
2) and q2 = (−1/

√
6, 2/

√
6.0,−1/

√
6). (1)



Set Q = [q1, q2]. (1)

Set R = QTA to get A = QR =


1/
√
2 −1/

√
6

0 2/
√
6

0 0

−1
√
2 −1

√
6


(√

2 1/
√
2

0 3/
√
6

)
. (2)

(II) Compute the matrix of the projection onto the column space of A. What is the distance of

the point (1, 1, 1, 0) to this column space?

Solution. The required matrix is P = QQT . (2)

After calculating we obtain P =


2/3 −1/3 0 −1/3

−1/3 2/3 0 0

0 0 0 0

−1/3 −1/3 0 2/3

. (2)

If b = (1, 1, 1, 0) then its projection is p = Pb = (1/3, 1/3, 0,−2/3). (2)

The required distance is then the length of b− p, which is
√
21/3. (2)

OR

(B) Given A =

1 −6 −4

0 4 2

0 −6 −3

.

(I) Find the eigenvalues of the matrix A.

Solution. To find the eigenvalue we need to solve the equation det(A−λI) = 0 for λ. (1)

The equation we obtain is −λ3 + 2λ2 − λ = 0. (2)

Solving this we obtain the following eigenvalues: 1, 1, 0. (1+1+1)

(II) Diagonalize the matrix A. (10 marks)

Solution. We obtain the following A = PBP−1, where

P =

 2 0 1

−1 −2 0

2 3 0

 and B =

0 0 0

0 1 0

0 0 1

 .

(Getting these matrices would fetch 5 marks and the derivation of the process

would fetch another 5 marks.)

13. (A) Given that f : (a, b) → R is a differentiable function.

(I) Prove that f(x) is increasing on (a, b) iff f ′(x) ≥ 0 for all x ∈ (a, b).

Solution. If f is monotone increasing then by definition f(x) ≤ f(y) if x ≤ y while f(x) ≥
f(y) if x ≥ y. Then for increasing functions the Newton-Quotient is always non-negative so

the derivative is always non-negative as it is the limit of a non-negative function. (2)

Conversely, since f(x) is differentiable we can apply the MVT: given two points x1 < x2 in

(a, b) we look at (x1, x2). By the MVT we have some point x0 ∈ (x1, x2) such that (2)

f ′(x0) =
f(x2)− f(x1)

x2 − x1
.
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Since the derivative is non-negative we get

f(x2)− f(x1)

x2 − x1
= f ′(x0) ≥ 0,

which implies f(x2) ≥ f(x1) whenever x2 > x1. (2)

(II) Prove that if f ′(x) > 0 for all x ∈ (a, b), then f(x) is strictly increasing.

Solution. We assume f ′(x) > 0, that is

lim
x→x0

f(x)− f(x0)

x− x0
> 0.

Then, there exists an interval (x0− δ, x0+ δ) for some δ > 0 such that
f(x)− f(x0

x− x0
> 0. This

implies that f(x) is monotone increasing in the interval (x0 − δ, x0 + δ). (4)

Since this is true at any point x0 ∈ (a, b), we take the union of all the intervals (x0− δ, x0+ δ)

to conclude that f(x) is monotone strictly increasing in the whole domain. (2)

(III) Is the reverse implication of part (II) true? If yes, why? If no, why not?

Solution. No. (1)

Consider the example f(x) = x3. (1)

This function is strictly increasing and differentiable on R but f ′(0) = 0. (2)

OR

(B) (I) Show that the series
∞∑

n=0

1

np
converges if p > 1 and diverges if p ≤ 1.

Solution. Let us denote the partial sums by

An,p := 1 +
1

2p
+ · · ·+ 1

np
.

The series converges/diverges if the sequence of partial sums converges/diverges. (1)

Clearly for p = 1, (An,1) is a monotonically increasing sequence. (1)

Also for n ∈ N we have

A2n = 1 +
1

2
+

(
1

3
+

1

4

)
+ · · ·+

(
1

2n−1 + 1
+ · · ·+ 1

2n

)
≥ 1 +

1

2
+

2

4
+ · · ·+ 2n−1

2n

= 1 +
n

2
.

This shows that (An,1) is not bounded above and hence is not convergent. (1)

For p = 2 we have

An,2 ≤ 1 +
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1) · n

= 1 +

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ . . .+

(
1

n− 1
− 1

n

)
= 2− 1

n
< 2.
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Thus (An,2) is bounded above and is convergent. (1)

For any p we have that (An,p) is monotonically increasing. Since for p = 1 the sequence is

divergent, so the given series is divergent for p ≤ 1 since (2)

0 <
1

n
≤ 1

np
if p ≤ 1.

Again since the sequence is convergent for p = 2 then given series is convergent for p ≥ 2

since we have (2)

0 <
1

np
≤ 1

n2
if p ≥ 2.

(II) Show that the series
∞∑

n=1
(−1)n+1x

n

n
is convergent for −1 < x ≤ 1.

Solution. We apply the ratio test here. (1)

Define L := limn→∞

∣∣∣∣ (−1)n+2xn+1/(n+ 1)

(−1)n+1xn/n

∣∣∣∣. (1)

Calculate L. (2)

Conclude based on L that the series converges for |x| < 1, x ̸= −1. (3)

Justify why the series does not converge when x = −1. (1)

14. (A) (I) Given that f is continuous on [a, b], a > 0 and differentiable on (a, b). Show that if

f(a)

a
=

f(b)

b
,

then there exists an x0 ∈ (a, b) such that x0f
′(x0) = f(x0).

Solution. We need to apply Rolle’s Theorem to the function h(x) =
f(x)

x
, x ∈ [a, b].

(Identifying the correct function fetches 2 marks and the rest of the derivation

fetches 4 marks.)

(II) Given that f is continuous on [0, 2] and twice differentiable on (0, 2). Show that if

f(0) = 0, f(1) = 1 and f(2) = 2,

then there exists an x0 ∈ (0, 2) such that f ′′(x0) = 0.

Solution. From the MVT, there exists some x1 ∈ (0, 1) and x2 ∈ (1, 2) such that (3)

f ′(x1) = f(1)− f(0) = 1 and f ′(x2) = f(2)− f(1) = 1.

Now we apply Rolle’s Theorem to f ′ on [x1, x2]. (3)

(III) Given that f : R → R is n+ 1 times differentiable on R. Prove that for every x ∈ R there is

a θ ∈ (0, 1) such that

f(x) = f(0) + xf ′(x)− x2

2
f ′′(x) + · · ·+ (−1)n+1x

n

n!
f (n)(x) + (−1)n+2 xn+1

(n+ 1)!
f (n+1)(θx),

Page 4



and

f

(
x

1 + x

)
= f(x)− x2

1 + x
f ′(x) + · · ·+ (−1)n

x2n

(1 + x)n
f (n)(x)

n!

+ (−1)n+1 x2n+2

(1 + x)n+1

f (n+1)
(

x+θx2

1+x

)
(n+ 1)!

, x ̸= −1.

Solution. By Taylor’s theorem we have (1)

f(0) = f(x+ (−x)) = f(x) +
f ′(x)

1!
(−x) + · · ·+ f (n)(x)

n!
(−x)n +

f (n+1)(x− x0

(n+ 1)!
(−x)n+1.

Now take x0 such that θ = 1− x0

x
. (1)

For the next part, observe f

(
x

1 + x

)
= f

(
x− x2

1 + x

)
. (1)

Now proceed like before. (1)

OR

(B) (I) Sketch the region whose area is represented by the following definite integrals, and evaluate

the integral using an appropriate formula:

(a)
2∫

−1

(x+ 2)dx,

Solution. The region is the one bounded by the lines in red, blue, green and the x-axis

as shown below: (2.5)

We have (2.5)

2∫
−1

(x+ 2)dx =

[
x2

2
+ 2x

]2
−1

=
15

2
.

(b)
1∫
0

√
1− x2dx.

Solution. The region is the one bounded by the curve in red, the lines in blue, green

and the x-axis as shown below: (2.5)
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We have (2.5)

1∫
0

√
1− x2dx =

1

2

[
x
√
1− x2 + arcsin(x)

]1
0
=

π

4
.

(II) Find the area of the shaded region in the figure given below.

Solution. The required area is (2)∫ 2

0

{(2− y2) + y}dy.

The value of the integral is (2)

[
2y − y3

3
+

y2

2

]2
0

So, the required area is
10

3
. (2)

15. (A) (I) Find an antiderivative of f : R → R defined by f(θ) = sin4 θ cos2 θ. (5 marks)

Solution. We have for any a ∈ R, (1)

x∫
a

sin4 θ cos2 θdθ =
1

2

x∫
a

(1− cos(2θ)

(
1

2
sin(2θ)

)2

dθ.
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Simplifying further we eventually obtain (1)

x∫
a

sin4 θ cos2 θdθ =
1

8

x∫
a

1

2
(1− cos(4θ)dθ −

x∫
a

sin2(2θ) cos(2θ)dθ.

For the second integral we use the substitution u = sin(2θ) so that u′(θ) = 2 cos(2θ) and

cos(2θ)dθ =
1

2
du. (1)

Using this substitution we will obtain (1)

x∫
a

sin4 θ cos2 θdθ =
1

8

[
1

2
θ − 1

8
sin(4θ)

]x
a

− 1

16

[
u3

3

]sin(2x)
sin(2a)

=
1

16
x− 1

64
sin(4x)− 1

16
a+

1

64
sin(4a)− 1

48
sin3(2x) +

1

48
sin3(2a),

and an antiderivative F : R → R is given by (1)

F (θ) =
1

16
θ − 1

64
sin(4θ)− 1

48
sin3(2θ).

(Note that the final expression can be written in many different ways using

double-angle formulas, we will accept all valid solutions.)

(II) Evaluate the integral
π/2∫
0

1 + cos θ

3− cos θ
dθ.

Solution. (Each line of simplification is worth 1 mark in this solution.)

π/2∫
0

1 + cos θ

3− cos θ
dθ =

u(π/2)∫
u(0

1 + 1−u2

1+u2

3− 1−u2

1+u2

· 2

1 + u2
du

= 2

tan(π/4)∫
tan 0

1

1 + 2u2
· 1

1 + u2
du

= 4

∫ 1

0

1

1 + 2u2
du− 2

∫ 1

0

1

1 + u2
du

=
4√
2
[arctan(

√
2u)]10 − 2[arctanu]10

=
4

√
t2

arctan
√
2− π

2
.

(III) Find the values of α ∈ R for which the integral
∞∫
1

xαdx converges.

Solution. Let α ̸= −1, then (1)

∫ ∞

1

xαdx = lim
b→∞

∫ b

1

xαdx = lim
b→∞

[
xα+1

α+ 1

]b
1

=
1

α+ 1
lim
b→∞

(bα+1 − 1).

Now limb→∞ bα+1 = +∞ for α+ 1 > 0, so limb→∞(bα+1 − 1) = +∞. (1)

For α < −1 we have negative power of b hence limb→∞ bα+1 = 0. (1)
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For α = −1 we have (1)∫ ∞

1

1

x
dx = lim

b→1

∫ x

1

1

x
dx = lim

b→∞
ln b = ∞.

So we get that the integral converges if and only if α < −1 and the value of the integral is

then (2)∫ ∞

1

xαdx =
1

α+ 1
lim
b→∞

(bα+1 − 1) =
1

α+ 1
(−1) = − 1

α+ 1
.

OR

(B) (I) Find the volume of the solid generated when the region enclosed by y =
√
x, y = 2, and x = 0

is revolved about the y-axis.

Solution. The required volume is given by the integral
∫ 2

0
π[u(y)]2dy =

∫ 2

0
πy4dy =

32π

5
sq.

units. (Identifying the integral correctly will fetch 4 marks. And, then correctly

evaluating this integral would fetch another 4 marks.)

(II) Find the exact arc length of the curve y = 3x3/2 − 1 from x = 0 to x = 1.

Solution. The exact arc-length of f(x) between a and b is given by
b∫
a

√
1 + f ′(x)2dx. (1)

We have y = 3x3/2 − 1, so y′ =
9

2
x1/2. (1)

Substituting this with a = 0 and b = 1 in the formula, we obtain (2)

∫ 1

0

√
1 +

(
9

2
x1/2

)2

dx =
1

2

∫ 1

0

√
81x+ 4dx.

Now we substitute 81x+ 4 = u2 to get dx = 2
81udu and the integral becomes (2)

1

2

∫ 1

0

√
u2 · 2

81
udu.

Evaluating this integral we obtain the arc length to be
1

243
. (2)

Page 8


