Write legibly and show your full work to get credit.

$$
\text { Part } \mathbf{A}(5 \times 2=10 \text { marks })
$$

Instructions

- All questions are compulsory.

Questions

1. Given S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$. Parametrize S by using the spherical coordinates.
(2 marks)
2. Using the second fundamental theorem of calculus, show that

$$
\int_{C} 3 x^{2} d x+2 y z d y+y^{2} d z=2
$$

where C is a circular arc connecting the points $(0,0,0)$ and $(1,1,1)$.
(2 marks)
3. Find the volume of the solid S bounded by the elliptic paraboloid $x^{2}+2 y^{2}+z=16$, the planes $x=2$, $y=2$ and the coordinate planes.
(2 marks)
4. Define the curl of a vector field in terms of some cross product. Explain your notation completely for full credit.
(2 marks)
5. Consider the surface $S: x^{2}+y^{2}+z^{2}=8,-1 \leq z \leq 2$. Find the unit outward normal to S. (2 marks)

Part A ($3 \times 5=15$ marks $)$

Instructions

- Question 6 is compulsory in this part. For questions 7 and 8 , you can choose to do either part (a) or part (b).
- If you do both parts for a question then marks will be awarded only for the first answered part (which is not crossed-out), even if the solution is not complete.

Questions

6. Evaluate

$$
\iiint_{D} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V
$$

where $D=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 4 a^{2}, z \geq a\right\}$.
7. (a) Evaluate the following using double integrals

$$
\int_{0}^{1}\left(\tan ^{-1} \pi x-\tan ^{-1} x\right) d x
$$

OR

(b) Find the volume of the solid in the first octant bounded below by the surface $z=\sqrt{x^{2}+y^{2}}$ and above by $x^{2}+y^{2}+z^{2}=8$ as well as the planes $y=0$ and $y=x$.
8. (a) Evaluate the area of the region enclosed by the simple closed curve $x^{2 / 3}+y^{2 / 3}=1$.

OR

(b) Let C be the parametric curve $R(t)=(\cos t, \sin t, \cos t+4), 0 \leq t \leq 2 \pi$ and

$$
F(x, y, z)=\left(z^{2}+e^{z}, 4 x, e^{z} \cos ^{2} z\right)
$$

Evaluate $\oint_{C} F \cdot d R$.

