Indian Institute of Information Technology (IIIT) Manipur

Assessment I, April 2023

Course Title: Mathematics II Course Code: MA1012

Semester: II (Sections A & B)

Maximum Marks: 25

Date of Examination: April 2023 Time: 60 minutes

Write legibly and show your full work to get credit.

Part A
$$(5 \times 2 = 10 \text{ marks})$$

Instructions

All questions are compulsory.

Questions

- 1. Given $f(x,y) = z, x = r \cos \theta$ and $y = r \sin \theta$. If $z = x^2 + 2xy$, then evaluate $\frac{\partial z}{\partial \theta}$ in terms of x and y.
- 2. Given $f: \mathbb{R}^3 \to \mathbb{R}$ and $X_0 \in \mathbb{R}^3$, show that $f_x(X_0)$ can be written as a directional derivative in the direction of some vector in \mathbb{R}^3 . (2 marks)
- 3. A plane curve has the equation y = f(x), where the function f is twice differentiable. What is the curvature of the curve at the point (x, f(x))? (2 marks)
- 4. Given $f: \mathbb{R}^3 \to \mathbb{R}$ be differentiable and $R(t) = (x(t), y(t), z(t)), t \in \mathbb{R}$ be a differentiable curve such that f(R(t)) attains its minimum at some t_0 . Show that $\nabla f(R(t_0))$ is perpendicular to $R'(t_0)$.

 (2 marks)

5. State the mixed derivative theorem (also called Euler's theorem in some textbooks). (2 marks)

Part A
$$(3 \times 5 = 15 \text{ marks})$$

Instructions

- Question 6 is compulsory in this part. For questions 7 and 8, you can choose to do either part (a) or part (b).
- If you do both parts for a question then marks will be awarded only for the first answered part (which is not crossed-out), even if the solution is not complete.

Questions

6. Find the local maxima, local minima and saddle point(s) for the following function (5 marks)

$$x^4 + y^4 - 2x^2 - 2y^2 + 4xy.$$

7. (a) Given $f: \mathbb{R}^n \to \mathbb{R}$ is defined by $f(x_1, x_2, \dots, x_n) = x_1^2 x_2^2 \cdots x_n^2$ and $n \geq 2$. Using the Lagrange multiplier method, find the maximum value of f subject to the constraint $g(x_1, x_2, \dots, x_n) = x_1^2 + x_2^2 + \dots + x_n^2 = 1$. What is the minimum value of f? (4+1 marks)

(b) Given $S \subset \mathbb{R}^3$ be an open convex set and $f: S \to \mathbb{R}$ be a differentiable convex function on S. Prove that for all $X, Y \in S$, we have (5 marks)

$$f(X) - f(Y) \ge (X - Y) \cdot \nabla f(Y).$$

8. (a) Given the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Show that f_x and f_y are not continuous at (0,0). Is f differentiable at (0,0)? (2+2+1 marks)

\mathbf{OR}

- (b) Consider the cone $z = x^2 + y^2$.
 - (I) Find the equation of the tangent plane to the cone at $(1, 1, \sqrt{2})$. (3 marks)
 - (II) Find an equation for the normal line to the cone at the point. (2 marks)