Write legibly and show your full work to get credit.

Part A ($5 \times 2=10$ marks $)$

Instructions

- All questions are compulsory.

Questions

1. Given $f(x, y)=z, x=r \cos \theta$ and $y=r \sin \theta$. If $z=x^{2}+2 x y$, then evaluate $\frac{\partial z}{\partial \theta}$ in terms of x and y.
(2 marks)
2. Given $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $X_{0} \in \mathbb{R}^{3}$, show that $f_{x}\left(X_{0}\right)$ can be written as a directional derivative in the direction of some vector in \mathbb{R}^{3}.
(2 marks)
3. A plane curve has the equation $y=f(x)$, where the function f is twice differentiable. What is the curvature of the curve at the point $(x, f(x))$?
(2 marks)
4. Given $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable and $R(t)=(x(t), y(t), z(t)), t \in \mathbb{R}$ be a differentiable curve such that $f(R(t))$ attains its minimum at some t_{0}. Show that $\nabla f\left(R\left(t_{0}\right)\right)$ is perpendicular to $R^{\prime}\left(t_{0}\right)$.
5. State the mixed derivative theorem (also called Euler's theorem in some textbooks).

Part A ($3 \times 5=15$ marks $)$

Instructions

- Question 6 is compulsory in this part. For questions 7 and 8 , you can choose to do either part (a) or part (b).
- If you do both parts for a question then marks will be awarded only for the first answered part (which is not crossed-out), even if the solution is not complete.

Questions

6. Find the local maxima, local minima and saddle point(s) for the following function

$$
x^{4}+y^{4}-2 x^{2}-2 y^{2}+4 x y .
$$

7. (a) Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{2} x_{2}^{2} \cdots x_{n}^{2}$ and $n \geq 2$. Using the Lagrange multiplier method, find the maximum value of f subject to the constraint $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$. What is the minimum value of f ?

OR

(b) Given $S \subset \mathbb{R}^{3}$ be an open convex set and $f: S \rightarrow \mathbb{R}$ be a differentiable convex function on S. Prove that for all $X, Y \in S$, we have
(5 marks)

$$
f(X)-f(Y) \geq(X-Y) \cdot \nabla f(Y)
$$

8. (a) Given the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right), & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Show that f_{x} and f_{y} are not continuous at $(0,0)$. Is f differentiable at $(0,0) ?(\mathbf{2}+\mathbf{2}+\mathbf{1}$ marks $)$

OR

(b) Consider the cone $z=x^{2}+y^{2}$.
(I) Find the equation of the tangent plane to the cone at $(1,1, \sqrt{2})$.
(II) Find an equation for the normal line to the cone at the point.
(2 marks)

