MA1012: Problem Sheet 1

Dr Manjil P. Saikia

March 2023

1. Prove that every convergent sequence in \mathbb{R}^{3} is bounded.
2. Prove that every bounded sequence in \mathbb{R}^{2} has a convergent subsequence.
3. Find a parametric equation of the line of intersection of $x-2 y=3$ and $2 y+z=5$.
4. Find the parametric representation of the circle of radius 3 centered at $(1,0,2)$ and parallel to the $y z$-plane.
5. Reparametrize the curve $R(t)=(2+t, 3-t, 5 t)$ where $t \geq 0$ in terms of the arc length.
6. Show that $R^{\prime \prime}(t)=T^{\prime} \frac{d s}{d t}+T \frac{d^{2} s}{s t^{2}}$, where T is the unit tangent vector of the curve given by $R(t)$.
7. Find the unit tangent vector, principal normal and the curvature for the curve $R(t)=$ $(\sqrt{2} \cos t, \sin t, \sin t)$ where $t \in \mathbb{R}$.
8. For which point is the curvature maximum for the curve $y=\ln x, x>0$?
