MA1012: Problem Sheet 2

Dr Manjil P. Saikia

March 2023

1. Find the following limits (if they exist):

(a)
$$\lim_{(x,y)\to(0,0)} \frac{3x^2|y|}{x^2+y^2},$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2},$$

(c)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{(x+y+z)^2}{x^2+y^2+z^2}.$$

2. Using the sequential definition of limits, show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{xy} & xy \neq 0, \\ 1 & xy = 0, \end{cases}$$

is continuous on \mathbb{R}^2 .

3. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} 1 & xy = 0, \\ 0 & xy \neq 0. \end{cases}$$

Show that $f_x(0,0) = f_y(0,0) = 0$. Is f continuous at (0,0)?

4. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{3x^2y - y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Is f continuous at (0,0)? Is f_y continuous at (0,0)?

- 5. Are the following functions differentiable at (0,0) where $f: \mathbb{R}^2 \to \mathbb{R}$ and f(x,y) is given by
 - (a) |x| + |y|,
 - (b) $\sqrt{|xy|}$,
 - (c) |xy|,
 - (d) $x^2 + \sin y + y^2 e^x$.
- 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be differentiable, and suppose f(1,2) = f(3,4) = 0, then show that there exists a point (x_0, y_0) lying in the line segment joining (1,1) and (3,4) such that $f_x(x_0, y_0) + f_y(x_0, y_0) = 0$.