MA1012: Problem Sheet 3

Dr Manjil P. Saikia

March 2023

1. Determine in which directions the directional derivatives exists for the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, where $f(x, y)$ is given by
(a) $\sqrt{|x y|}$, and
(b) $\frac{x^{2} y}{x^{2}+y^{2}}$.
2. For $X \in \mathbb{R}^{3}$ and $f(X):=\|X\|$, let $X_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ and $\left\|X_{0}\right\|=1$, show that $\nabla f\left(X_{0}\right)=X_{0}$ and find the equation of the tangent plane of the sphere $f(x, y, z)=1$ at X_{0}.
3. Find a point on the surface $z=g(x, y)=x^{2}-2 x y+2 y$ at which the surface has a horizontal tangent plane.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable and $M \in \mathbb{R}$ be such that $\left|f_{x}(X)\right| \leq M$ and $\left|f_{y}(X)\right| \leq M$ for all $X \in \mathbb{R}^{2}$, then show that for all $X, Y \in \mathbb{R}^{2}$ we have $|f(X)-f(Y)| \leq 2 M| | X-Y \|$.
5. Prove the extended mean value theorem.
6. Let $D \subset \mathbb{R}^{2}$ and $\left(x_{0}, y_{0}\right)$ be an interior point of D. Suppose that $f: D \rightarrow \mathbb{R}$ and f has a local maximum or minimum at $\left(x_{0}, y_{0}\right)$. Then,
(a) if $(u, v) \in \mathbb{R}^{2}$ with $\|(u, v)\|=1$ and $D_{\left(x_{0}, y_{0}\right)} f(u, v)$ exists then $D_{\left(x_{0}, y_{0}\right)} f(u, v)=0$, and
(b) if f is differentiable at $\left(x_{0}, y_{0}\right)$, then $f^{\prime}\left(x_{0}, y_{0}\right)=0$.
7. Examine the behaviour of the following functions at the point $(0,0)$:
(a) $x^{2}-y^{2}$, and
(b) $x^{2}-2 x y^{2}$.
8. Find a point on the surface $z=x y+1$ that is nearest to the origin.
9. Find the points of global maximum and global minimum of the function $f(x, y)=x^{2}+$ $y^{2}-2 x+2$ on the region $\left\{(x, y): x^{2}+y^{2} \leq 4, y \geq 0\right\}$.
10. Prove the second derivative test.
