MA1012: Problem Sheet 6

Dr Manjil P. Saikia

April 2023

- 1. Consider the paraboloid $z = x^2 + y^2 + 1$. Parametrize the surface by considering it as a graph, also parametrize the surface in the variables z and θ using cylindrical coordinates.
- 2. Parametrize the part of the sphere $x^2 + y^2 + z^2 = 16$, $-2 \le z \le 2$ using the spherical coordinates.
- 3. Let S denote the part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$. Find the area of S by considering S as a part of the graph z = f(x, y), where

$$f(x, y) = 10 - 2x - 5y;$$

and, by considering S as a parametric surface

 $r(u, v) = (u \cos v, u \sin v, 10 - u(2 \cos v + 5 \sin v)) \quad 0 \le u \le 3 \text{ and } 0 \le v \le 2\pi.$

- 4. Let S be the part of the cylinder $y^2 + z^2 = 1$ that lies between the planes x = 0 and x = 3 in the first octant. Evaluate $\iint_S (z + 2xy) d\sigma$.
- 5. Let $f(x,y) = (xy, y^2)$, evaluate $\int_C f \cdot dR$, where C is the upper half of the unit circle traversing from (-1,0) to (1,0).
- 6. Let $F(x, y, z) = (2xy^2 + 3x^2, 2yx^2, 1)$, evaluate $\int_C F \cdot dR$ where C is the circular arc connecting (0, 0, 0) and (1, 1, 1).
- 7. Let $f(x, y, z) = (x^2, xy, 1)$, then show that there is no φ such that $\nabla \varphi = f$.