MA1012: Problem Sheet 6

Dr Manjil P. Saikia

April 2023

1. Consider the paraboloid $z=x^{2}+y^{2}+1$. Parametrize the surface by considering it as a graph, also parametrize the surface in the variables z and θ using cylindrical coordinates.
2. Parametrize the part of the sphere $x^{2}+y^{2}+z^{2}=16,-2 \leq z \leq 2$ using the spherical coordinates.
3. Let S denote the part of the plane $2 x+5 y+z=10$ that lies inside the cylinder $x^{2}+y^{2}=9$. Find the area of S by considering S as a part of the graph $z=f(x, y)$, where

$$
f(x, y)=10-2 x-5 y
$$

and, by considering S as a parametric surface

$$
r(u, v)=(u \cos v, u \sin v, 10-u(2 \cos v+5 \sin v)) \quad 0 \leq u \leq 3 \quad \text { and } \quad 0 \leq v \leq 2 \pi .
$$

4. Let S be the part of the cylinder $y^{2}+z^{2}=1$ that lies between the planes $x=0$ and $x=3$ in the first octant. Evaluate $\iint_{S}(z+2 x y) d \sigma$.
5. Let $f(x, y)=\left(x y, y^{2}\right)$, evaluate $\int_{C} f \cdot d R$, where C is the upper half of the unit circle traversing from $(-1,0)$ to $(1,0)$.
6. Let $F(x, y, z)=\left(2 x y^{2}+3 x^{2}, 2 y x^{2}, 1\right)$, evaluate $\int_{C} F \cdot d R$ where C is the circular arc connecting $(0,0,0)$ and $(1,1,1)$.
7. Let $f(x, y, z)=\left(x^{2}, x y, 1\right)$, then show that there is no φ such that $\nabla \varphi=f$.
