MA1012: Problem Sheet 7

Dr Manjil P. Saikia

April 2023

All plane curves C in this problem sheet are oriented counterclockwise.

1. Evaluate the line integral

$$
\oint_{C}\left(x^{2} \sin ^{2} x-y^{3}\right) d x+\left(y^{2} \cos ^{2} y-y\right) d y
$$

where C is the closed curve consisting of $x+y=0, x^{2}+y^{2}=25$ and $y=x$ and lying in the first and fourth quadrant.
2. Let a square R be enclosed by C and

$$
\oint_{C}\left(x y^{2}+x^{3} \sin ^{3} x\right) d x+\left(x^{2} y+2 x\right) d y=6
$$

Find the area of the square.
3. Let C be a simple closed curve and $\alpha \in \mathbb{R}$, such that

$$
\oint_{C}\left(\alpha e^{x} y+e^{x}\right) d x+\left(e^{x}+y e^{y}\right) d y=0
$$

Find the value of α.
4. Let D be the region enclosed by a simple closed smooth curve C. Show that

$$
\text { Area of } D=\oint_{C} x d y=-\oint_{C} y d x
$$

