Semester: Section A, II
Maximum Marks: 12.5
Date of Examination: 22 March 2023

Instructions

- All questions are compulsory.
- Write legibly and show your full work to get credit.

Questions

1. Is the function $f(x, y)=4 x^{2}+y^{2}+4 x y$ a convex function? Justify your answer.
2. What geometrical curve does $R(t)=(6 \cos t, 3 \sin t)$ parametrize. Justify with a diagram. (3 marks)
3. Show that the following limit does not exist

$$
\lim _{\left(x_{1}, x_{2}\right) \rightarrow(0,0)} \frac{x_{1} x_{2} \cos x_{2}}{4 x_{1}^{2}+x_{2}^{2}}
$$

4. What is your favourite mathematical result and why?

Semester: Section A, II
Maximum Marks: 12.5
Date of Examination: 22 March 2023

Instructions

- All questions are compulsory.
- Write legibly and show your full work to get credit.

Questions

1. Is the function $f(x, y)=2 x^{2}+y^{2}+4 x y$ a convex function? Justify your answer.
2. What geometrical curve does $R(t)=(4 \cos t, 4 \sin t, t)$ parametrize? Justify with a diagram.
marks)
3. Find the following limit

$$
\lim _{(a, b, c) \rightarrow(0,0,0)} \frac{1-\cos (a+b+c)}{2 c a+a^{2}+b^{2}+2 a b+c^{2}+2 b c} .
$$

4. What is your favourite result from last semester's linear algebra part, and why?

Semester: Section A, II
Maximum Marks: 12.5
Date of Examination: 22 March 2023

Instructions

- All questions are compulsory.
- Write legibly and show your full work to get credit.

Questions

1. Mention with mathematical details one use of the Hessian of a function that was discussed in the class. (3 marks)
2. Is the following function differentiable at $(0,0)$? Justify your answer.

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{2 x_{1}^{2} x_{2}}{x_{1}^{2}+x_{2}^{2}}, & \left(x_{1}, x_{2}\right) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

($1+3$ marks)
3. Show that the directional derivative of $f(a, b)=|a|+|b|$ does not exist at the point $(0,0)$. (3 marks)
4. How will you make the world a better place to live in?

Semester: Section A, II
Maximum Marks: 12.5
Date of Examination: 22 March 2023

Instructions

- All questions are compulsory.
- Write legibly and show your full work to get credit.

Questions

1. What is a convex optimization problem? Explain mathematically.
2. When does the directional derivative of $f(a, b)=\sqrt{|a b|}$ for $(a, b) \in \mathbb{R}^{2}$ exists at the point $(0,0)$? marks)
3. Let $g(c, d)=6-c^{2}-4 d^{2}$, find a vector which is perpendicular to the curve $g(c, d)=1$ at the point $(1,1)$.
4. Which book was referred to in the class multiple times? Mention with names of authors and publishers. (2.5 marks)
